terclim by ICS banner
IVES 9 IVES Conference Series 9 PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

Abstract

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

This work merges our 10-years’ studies¹ on bentonite along with information from the literature to design a study-model feasible to optimize the effects of adjuvants by maximizing the impact on targeted compounds, while minimizing the one on desirable wine components. The boosting was simply based on the frequently unintended uses of oenological adjuvants by winemakers based also on some lacking in the EU regulations, which produces jeopardized main and side-effects, as the ones by bentonite are emblematic.

Indeed, there is no EU regulated upper limit for the addition of bentonite during the winemaking process, but the International Oenological Codex establishes the properties of the oenological bentonites amending the three classes of Ca-, Na-, and Na-activated bentonite.

Our studies demonstrated that the from-bentonite enrichment in wine cations results from the clay Cation Exchange Capacity (CEC) and from the pH, ethanol content and ionic strength which also impact on the residual card-house clay structure that is an important property for deproteinization. Indeed, for the removal of hazing forming proteins (b-glucanases, thaumatin-like proteins, chitinases) clay properties as CEC, Swell Index (SI), and Specific Surface Area (SSA) as well as wine pH are more impacting than the bentonite dose.

Considering adjuvant side-effects, bentonite can remove phenolic compounds so to modify wine colour and astringency. About terpenic wines, double addition to must for clarifying and to wine for fining outlined less removal than to the solely wine treatment. Removal of aglycones by low doses and of glycosylated terpenols especially by Ca-bentonite were predicted by RSM. For the fermentative aroma compounds, adsorption intensity and capacity more depended on the characteristics of the bentonite (SSA and CEC) than on the properties of the substances: the main removal is an indirect effect of deproteinization, while a direct adsorption can be described by the Freundlich equation for only a few compounds.

 

1. Lambri M., Colangelo D., Dordoni R., Torchio F., De Faveri D.M. (2016). Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds, Chapter 18 in (Ed. Morata A. and Loira I., Intech Publisher) book: Grape and Wine Biotechnology. p. 381-400. ISBN 978-953-51-2692-8.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Milena Lambri*1, Roberta Dordoni1, Mario Gabrielli1

1. Department for Sustainable Food Process – DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmese, 84 – 20122 Piacenza (Italy)

Contact the author*

Keywords

Oenological practices, Precision oenology, Adjuvant optimization, Bentonite, Wine resi-lience

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².