terclim by ICS banner
IVES 9 IVES Conference Series 9 PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

Abstract

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

This work merges our 10-years’ studies¹ on bentonite along with information from the literature to design a study-model feasible to optimize the effects of adjuvants by maximizing the impact on targeted compounds, while minimizing the one on desirable wine components. The boosting was simply based on the frequently unintended uses of oenological adjuvants by winemakers based also on some lacking in the EU regulations, which produces jeopardized main and side-effects, as the ones by bentonite are emblematic.

Indeed, there is no EU regulated upper limit for the addition of bentonite during the winemaking process, but the International Oenological Codex establishes the properties of the oenological bentonites amending the three classes of Ca-, Na-, and Na-activated bentonite.

Our studies demonstrated that the from-bentonite enrichment in wine cations results from the clay Cation Exchange Capacity (CEC) and from the pH, ethanol content and ionic strength which also impact on the residual card-house clay structure that is an important property for deproteinization. Indeed, for the removal of hazing forming proteins (b-glucanases, thaumatin-like proteins, chitinases) clay properties as CEC, Swell Index (SI), and Specific Surface Area (SSA) as well as wine pH are more impacting than the bentonite dose.

Considering adjuvant side-effects, bentonite can remove phenolic compounds so to modify wine colour and astringency. About terpenic wines, double addition to must for clarifying and to wine for fining outlined less removal than to the solely wine treatment. Removal of aglycones by low doses and of glycosylated terpenols especially by Ca-bentonite were predicted by RSM. For the fermentative aroma compounds, adsorption intensity and capacity more depended on the characteristics of the bentonite (SSA and CEC) than on the properties of the substances: the main removal is an indirect effect of deproteinization, while a direct adsorption can be described by the Freundlich equation for only a few compounds.

 

1. Lambri M., Colangelo D., Dordoni R., Torchio F., De Faveri D.M. (2016). Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds, Chapter 18 in (Ed. Morata A. and Loira I., Intech Publisher) book: Grape and Wine Biotechnology. p. 381-400. ISBN 978-953-51-2692-8.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Milena Lambri*1, Roberta Dordoni1, Mario Gabrielli1

1. Department for Sustainable Food Process – DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmese, 84 – 20122 Piacenza (Italy)

Contact the author*

Keywords

Oenological practices, Precision oenology, Adjuvant optimization, Bentonite, Wine resi-lience

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).