terclim by ICS banner
IVES 9 IVES Conference Series 9 PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

Abstract

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

This work merges our 10-years’ studies¹ on bentonite along with information from the literature to design a study-model feasible to optimize the effects of adjuvants by maximizing the impact on targeted compounds, while minimizing the one on desirable wine components. The boosting was simply based on the frequently unintended uses of oenological adjuvants by winemakers based also on some lacking in the EU regulations, which produces jeopardized main and side-effects, as the ones by bentonite are emblematic.

Indeed, there is no EU regulated upper limit for the addition of bentonite during the winemaking process, but the International Oenological Codex establishes the properties of the oenological bentonites amending the three classes of Ca-, Na-, and Na-activated bentonite.

Our studies demonstrated that the from-bentonite enrichment in wine cations results from the clay Cation Exchange Capacity (CEC) and from the pH, ethanol content and ionic strength which also impact on the residual card-house clay structure that is an important property for deproteinization. Indeed, for the removal of hazing forming proteins (b-glucanases, thaumatin-like proteins, chitinases) clay properties as CEC, Swell Index (SI), and Specific Surface Area (SSA) as well as wine pH are more impacting than the bentonite dose.

Considering adjuvant side-effects, bentonite can remove phenolic compounds so to modify wine colour and astringency. About terpenic wines, double addition to must for clarifying and to wine for fining outlined less removal than to the solely wine treatment. Removal of aglycones by low doses and of glycosylated terpenols especially by Ca-bentonite were predicted by RSM. For the fermentative aroma compounds, adsorption intensity and capacity more depended on the characteristics of the bentonite (SSA and CEC) than on the properties of the substances: the main removal is an indirect effect of deproteinization, while a direct adsorption can be described by the Freundlich equation for only a few compounds.

 

1. Lambri M., Colangelo D., Dordoni R., Torchio F., De Faveri D.M. (2016). Innovations in the Use of Bentonite in Oenology: Interactions with Grape and Wine Proteins, Colloids, Polyphenols and Aroma Compounds, Chapter 18 in (Ed. Morata A. and Loira I., Intech Publisher) book: Grape and Wine Biotechnology. p. 381-400. ISBN 978-953-51-2692-8.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Milena Lambri*1, Roberta Dordoni1, Mario Gabrielli1

1. Department for Sustainable Food Process – DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmese, 84 – 20122 Piacenza (Italy)

Contact the author*

Keywords

Oenological practices, Precision oenology, Adjuvant optimization, Bentonite, Wine resi-lience

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.