terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

Abstract

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the wine mouthfeel organoleptic properties, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen [2] or the lack of SO₂ which induce wine properties changes [3]. Nowadays, the phenolic composition of the wine without added SO₂ have not been reported. The aims of this study is to characterise the impact of oxygen on the phenolic composition of the wine without added sulphites during ageing. The evolution of the polyphenolic matrix have been monitored in function of the oxygen consumption. For the experiment, the identical wine without sulphite have been divided in different 30 L stainless steel tank. An increase amount of oxygen have been introduce from 0 mg/L to 36 mg/L of oxygen. Oxygen consumption have been followed. After consumption, wine samples have been collected for chemical and sensory analyses, and the same amount of oxygen have been introduce again. In total, three different cycle have been followed and sampled. Different phenolic analysis have been performed. Anthocyanin’s evolution have been followed from the monomeric anthocyanin to the polymerized pigments. Condensed tannins evolution have also be carry out as well as the crown procyanidins. A correlation between the oxygen amount and anthocyanin’s evolution have been determined as well as the tannin’s evolution. The research of specific phenolic markers from the wine without sulphite is on progress.

 

1. Drinkine, J., Lopes, P., Kennedy, J. A., Teissedre, P.-L., & Saucier, C. (2007). Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. Journal of Agricultural and Food Chemistry, 55(15), 6292–6299. https://doi.org/10.1021/jf070038w
2. Zeng, L., Teissèdre, P.-L., & Jourdes, M. (2016). Structures of polymeric pigments in red wine and their derived quantification markers revealed by high-resolution quadrupole time-of-flight mass spectrometry: Identification of polymeric pig-ments and their quantification markers. Rapid Communications in Mass Spectrometry, 30(1), 81–88. https://doi.org/10.1002/rcm.7416
3. Picariello, L., Gambuti, A., Petracca, F., Rinaldi, A., & Moio, L. (2018). Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. International Journal of Food Science & Technology, 53(1), 228–236. https://doi.org/10.1111/ijfs.13577

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jouin A. ¹, Ghidossi R. ¹, Teissedre P-L. ¹, Jourdes M. ¹

1. University of Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

Oxygen, Evolution, Phenolic compounds, Wine without added sulphite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).