terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

Abstract

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the wine mouthfeel organoleptic properties, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen [2] or the lack of SO₂ which induce wine properties changes [3]. Nowadays, the phenolic composition of the wine without added SO₂ have not been reported. The aims of this study is to characterise the impact of oxygen on the phenolic composition of the wine without added sulphites during ageing. The evolution of the polyphenolic matrix have been monitored in function of the oxygen consumption. For the experiment, the identical wine without sulphite have been divided in different 30 L stainless steel tank. An increase amount of oxygen have been introduce from 0 mg/L to 36 mg/L of oxygen. Oxygen consumption have been followed. After consumption, wine samples have been collected for chemical and sensory analyses, and the same amount of oxygen have been introduce again. In total, three different cycle have been followed and sampled. Different phenolic analysis have been performed. Anthocyanin’s evolution have been followed from the monomeric anthocyanin to the polymerized pigments. Condensed tannins evolution have also be carry out as well as the crown procyanidins. A correlation between the oxygen amount and anthocyanin’s evolution have been determined as well as the tannin’s evolution. The research of specific phenolic markers from the wine without sulphite is on progress.

 

1. Drinkine, J., Lopes, P., Kennedy, J. A., Teissedre, P.-L., & Saucier, C. (2007). Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. Journal of Agricultural and Food Chemistry, 55(15), 6292–6299. https://doi.org/10.1021/jf070038w
2. Zeng, L., Teissèdre, P.-L., & Jourdes, M. (2016). Structures of polymeric pigments in red wine and their derived quantification markers revealed by high-resolution quadrupole time-of-flight mass spectrometry: Identification of polymeric pig-ments and their quantification markers. Rapid Communications in Mass Spectrometry, 30(1), 81–88. https://doi.org/10.1002/rcm.7416
3. Picariello, L., Gambuti, A., Petracca, F., Rinaldi, A., & Moio, L. (2018). Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. International Journal of Food Science & Technology, 53(1), 228–236. https://doi.org/10.1111/ijfs.13577

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jouin A. ¹, Ghidossi R. ¹, Teissedre P-L. ¹, Jourdes M. ¹

1. University of Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

Oxygen, Evolution, Phenolic compounds, Wine without added sulphite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.