terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

Abstract

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the wine mouthfeel organoleptic properties, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen [2] or the lack of SO₂ which induce wine properties changes [3]. Nowadays, the phenolic composition of the wine without added SO₂ have not been reported. The aims of this study is to characterise the impact of oxygen on the phenolic composition of the wine without added sulphites during ageing. The evolution of the polyphenolic matrix have been monitored in function of the oxygen consumption. For the experiment, the identical wine without sulphite have been divided in different 30 L stainless steel tank. An increase amount of oxygen have been introduce from 0 mg/L to 36 mg/L of oxygen. Oxygen consumption have been followed. After consumption, wine samples have been collected for chemical and sensory analyses, and the same amount of oxygen have been introduce again. In total, three different cycle have been followed and sampled. Different phenolic analysis have been performed. Anthocyanin’s evolution have been followed from the monomeric anthocyanin to the polymerized pigments. Condensed tannins evolution have also be carry out as well as the crown procyanidins. A correlation between the oxygen amount and anthocyanin’s evolution have been determined as well as the tannin’s evolution. The research of specific phenolic markers from the wine without sulphite is on progress.

 

1. Drinkine, J., Lopes, P., Kennedy, J. A., Teissedre, P.-L., & Saucier, C. (2007). Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. Journal of Agricultural and Food Chemistry, 55(15), 6292–6299. https://doi.org/10.1021/jf070038w
2. Zeng, L., Teissèdre, P.-L., & Jourdes, M. (2016). Structures of polymeric pigments in red wine and their derived quantification markers revealed by high-resolution quadrupole time-of-flight mass spectrometry: Identification of polymeric pig-ments and their quantification markers. Rapid Communications in Mass Spectrometry, 30(1), 81–88. https://doi.org/10.1002/rcm.7416
3. Picariello, L., Gambuti, A., Petracca, F., Rinaldi, A., & Moio, L. (2018). Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. International Journal of Food Science & Technology, 53(1), 228–236. https://doi.org/10.1111/ijfs.13577

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jouin A. ¹, Ghidossi R. ¹, Teissedre P-L. ¹, Jourdes M. ¹

1. University of Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

Oxygen, Evolution, Phenolic compounds, Wine without added sulphite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.