GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat waves and drought stress impact grapevine growth and physiology

Heat waves and drought stress impact grapevine growth and physiology

Abstract

Context and purpose of the study – Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world. Although the effect of these factors on plant physiology and growth has been investigated separately, little is yet known about their interactions and the variability of these effects among genotypes and phenological stages. The main aim of this study was to evaluate the response of two grape varieties to heat and drought stress and subsequent recovery at different phenological stages.

Material and methods ‐ Pot‐grown Cabernet Sauvignon and Riesling plants were moved to environmentally‐controlled growth chambers at bloom, pre‐veraison and veraison in 2018. For each phenological stage, a different group of plants were used to avoid cumulative treatment effects. After 7 days of acclimation in the growth chambers, different treatments were imposed: control (no stress), water stress, heat stress (10°C above control), and combined water and heat stress. Growth, gas exchange, leaf water potential, photosystem electron transport and energy dissipation were measured in both young and mature leaves of 6 plants per treatment before the stress episode, during 7 days of stress, and through 7 days of recovery.

Results ‐ At bloom, water stress decreased transpiration, stomatal conductance and photosynthesis in both varieties. Combined stress decreased gas exchange only in Riesling. During pre‐veraison, heat stress reduced leaf water potential, gas exchange and chlorophyll fluorescence, both in young and mature leaves. Combined stress drastically decreased most of the parameters compared to control plants. This decline was higher in Riesling than in Cabernet Sauvignon. During veraison, drought was the dominant factor that affected most parameters. Additionally, heat stress exacerbated the drought stress effect on the physiological parameters. During the recovery periods, no significant differences were found among treatments in any parameter, indicating that both varieties were able to recover fully from the imposed stresses. Water stress and combined stress decreased shoot length, number of main leaves, lateral leaves and total leaf area in both varieties.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Noorani BARKAT (1), Markus KELLER(1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

high temperature, irrigation, leaf area, gas exchange, leaf age

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021). Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system.