GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat waves and drought stress impact grapevine growth and physiology

Heat waves and drought stress impact grapevine growth and physiology

Abstract

Context and purpose of the study – Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world. Although the effect of these factors on plant physiology and growth has been investigated separately, little is yet known about their interactions and the variability of these effects among genotypes and phenological stages. The main aim of this study was to evaluate the response of two grape varieties to heat and drought stress and subsequent recovery at different phenological stages.

Material and methods ‐ Pot‐grown Cabernet Sauvignon and Riesling plants were moved to environmentally‐controlled growth chambers at bloom, pre‐veraison and veraison in 2018. For each phenological stage, a different group of plants were used to avoid cumulative treatment effects. After 7 days of acclimation in the growth chambers, different treatments were imposed: control (no stress), water stress, heat stress (10°C above control), and combined water and heat stress. Growth, gas exchange, leaf water potential, photosystem electron transport and energy dissipation were measured in both young and mature leaves of 6 plants per treatment before the stress episode, during 7 days of stress, and through 7 days of recovery.

Results ‐ At bloom, water stress decreased transpiration, stomatal conductance and photosynthesis in both varieties. Combined stress decreased gas exchange only in Riesling. During pre‐veraison, heat stress reduced leaf water potential, gas exchange and chlorophyll fluorescence, both in young and mature leaves. Combined stress drastically decreased most of the parameters compared to control plants. This decline was higher in Riesling than in Cabernet Sauvignon. During veraison, drought was the dominant factor that affected most parameters. Additionally, heat stress exacerbated the drought stress effect on the physiological parameters. During the recovery periods, no significant differences were found among treatments in any parameter, indicating that both varieties were able to recover fully from the imposed stresses. Water stress and combined stress decreased shoot length, number of main leaves, lateral leaves and total leaf area in both varieties.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Noorani BARKAT (1), Markus KELLER(1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

high temperature, irrigation, leaf area, gas exchange, leaf age

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Pesticide – Free viticulture: towards agroecological wine-producing socio-ecosystems

Can we cultivate grapevine without pesticides? This is a huge challenge for this emblematic crop, which is one of the largest users of plant protection products. Pesticides are mainly used to protect the vine against leaf diseases (powdery mildew, mildew, black-rot), even in organic farming, which uses copper in particular. What are the research avenues that can help eliminate pesticides today?

Regulated deficit irrigation and crop load interaction effects on grape heterogeneity

Aim: To investigate the interaction effects between irrigation and crop load and the resulting impact on grape heterogeneity within a Geographical Indication in South Australia. 

Methods and Results: Cabernet Sauvignon grapes were sampled at the time of harvest from the Coonawarra

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.