GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat waves and drought stress impact grapevine growth and physiology

Heat waves and drought stress impact grapevine growth and physiology

Abstract

Context and purpose of the study – Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world. Although the effect of these factors on plant physiology and growth has been investigated separately, little is yet known about their interactions and the variability of these effects among genotypes and phenological stages. The main aim of this study was to evaluate the response of two grape varieties to heat and drought stress and subsequent recovery at different phenological stages.

Material and methods ‐ Pot‐grown Cabernet Sauvignon and Riesling plants were moved to environmentally‐controlled growth chambers at bloom, pre‐veraison and veraison in 2018. For each phenological stage, a different group of plants were used to avoid cumulative treatment effects. After 7 days of acclimation in the growth chambers, different treatments were imposed: control (no stress), water stress, heat stress (10°C above control), and combined water and heat stress. Growth, gas exchange, leaf water potential, photosystem electron transport and energy dissipation were measured in both young and mature leaves of 6 plants per treatment before the stress episode, during 7 days of stress, and through 7 days of recovery.

Results ‐ At bloom, water stress decreased transpiration, stomatal conductance and photosynthesis in both varieties. Combined stress decreased gas exchange only in Riesling. During pre‐veraison, heat stress reduced leaf water potential, gas exchange and chlorophyll fluorescence, both in young and mature leaves. Combined stress drastically decreased most of the parameters compared to control plants. This decline was higher in Riesling than in Cabernet Sauvignon. During veraison, drought was the dominant factor that affected most parameters. Additionally, heat stress exacerbated the drought stress effect on the physiological parameters. During the recovery periods, no significant differences were found among treatments in any parameter, indicating that both varieties were able to recover fully from the imposed stresses. Water stress and combined stress decreased shoot length, number of main leaves, lateral leaves and total leaf area in both varieties.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Noorani BARKAT (1), Markus KELLER(1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

high temperature, irrigation, leaf area, gas exchange, leaf age

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.