GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat waves and drought stress impact grapevine growth and physiology

Heat waves and drought stress impact grapevine growth and physiology

Abstract

Context and purpose of the study – Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world. Although the effect of these factors on plant physiology and growth has been investigated separately, little is yet known about their interactions and the variability of these effects among genotypes and phenological stages. The main aim of this study was to evaluate the response of two grape varieties to heat and drought stress and subsequent recovery at different phenological stages.

Material and methods ‐ Pot‐grown Cabernet Sauvignon and Riesling plants were moved to environmentally‐controlled growth chambers at bloom, pre‐veraison and veraison in 2018. For each phenological stage, a different group of plants were used to avoid cumulative treatment effects. After 7 days of acclimation in the growth chambers, different treatments were imposed: control (no stress), water stress, heat stress (10°C above control), and combined water and heat stress. Growth, gas exchange, leaf water potential, photosystem electron transport and energy dissipation were measured in both young and mature leaves of 6 plants per treatment before the stress episode, during 7 days of stress, and through 7 days of recovery.

Results ‐ At bloom, water stress decreased transpiration, stomatal conductance and photosynthesis in both varieties. Combined stress decreased gas exchange only in Riesling. During pre‐veraison, heat stress reduced leaf water potential, gas exchange and chlorophyll fluorescence, both in young and mature leaves. Combined stress drastically decreased most of the parameters compared to control plants. This decline was higher in Riesling than in Cabernet Sauvignon. During veraison, drought was the dominant factor that affected most parameters. Additionally, heat stress exacerbated the drought stress effect on the physiological parameters. During the recovery periods, no significant differences were found among treatments in any parameter, indicating that both varieties were able to recover fully from the imposed stresses. Water stress and combined stress decreased shoot length, number of main leaves, lateral leaves and total leaf area in both varieties.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Noorani BARKAT (1), Markus KELLER(1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

high temperature, irrigation, leaf area, gas exchange, leaf age

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Spatial determination of areas in the Western Balkans region favorable for organic production

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane