terclim by ICS banner
IVES 9 IVES Conference Series 9 DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

Abstract

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine. Respectively, macerations durated 15 and 30 days in total, including either pre-fermentative cooling or heating. Macro- (K, Ca, Mg, Na) and microelements (Al, Cu, Fe, Mn) were determined using the Optima DV 2000 inductively coupled plasma – optical emission spectrometer (Perkin Elmer, Shelton, Connecticut, USA) equipped with a Meinhard spray chamber, nebulizer, and peristaltic sample delivery system. The analysed elements were identified in line with ICP-OES using the PerkinElmer’s WinLab 1.35 software and quantified by direct calibration method. One-way analysis of variance (ANOVA) and Fisher’s least significance difference (LSD) test were used to compare mean values (p < 0.05). Statistics were performed using Statistica 10.0. software (Sta-Soft Inc. Tulsa, OK). The obtained results showed that the total content of macroelements in investigated wine ranged from 939.03 to 1038.57 mgL-¹. The total content of microelements ranged from 3.09 to 6.37 mgL-1, where was found that significantly the highest were treatments submitted to pre-fermentative heating (H15 and H30), despite duration of prolonged maceration. The most abundant minerals in investigated wine were potassium (K) among macroelements and iron (Fe) among microelements. The significantly highest concentration of iron (Fe) was found in the treatment equally affected with both pre-fermentative heating and prolonged post-fermentative maceration (H30). On the other hand, among the macroelements, the highest concentration of calcium (Ca) was found in treatments subjected to pre-fermentative heating (H15 and H30) regardless of maceration duration. Obtained results suggested that Teran red wine, affected with particular vinification processes considered as strong source of several micro- and macroelements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Fumica, Orbanić¹, Sara, Rossi¹, Ena, Bestulić¹, Karin, Kovačević Ganić², Natka, Ćurko², Marina, Tomašević², Tomislav, Plavša¹, Ana, Jeromel³, Sanja, Radeka¹

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
2. University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
3. University of Zagreb, Faculty of Agriculture, Department of Viticulture and Enology, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Contact the author*

Keywords

Teran grape variety, mineral composition, pre-fermentative mash treatment, prolonged ma-ceration

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.