terclim by ICS banner
IVES 9 IVES Conference Series 9 DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

Abstract

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine. Respectively, macerations durated 15 and 30 days in total, including either pre-fermentative cooling or heating. Macro- (K, Ca, Mg, Na) and microelements (Al, Cu, Fe, Mn) were determined using the Optima DV 2000 inductively coupled plasma – optical emission spectrometer (Perkin Elmer, Shelton, Connecticut, USA) equipped with a Meinhard spray chamber, nebulizer, and peristaltic sample delivery system. The analysed elements were identified in line with ICP-OES using the PerkinElmer’s WinLab 1.35 software and quantified by direct calibration method. One-way analysis of variance (ANOVA) and Fisher’s least significance difference (LSD) test were used to compare mean values (p < 0.05). Statistics were performed using Statistica 10.0. software (Sta-Soft Inc. Tulsa, OK). The obtained results showed that the total content of macroelements in investigated wine ranged from 939.03 to 1038.57 mgL-¹. The total content of microelements ranged from 3.09 to 6.37 mgL-1, where was found that significantly the highest were treatments submitted to pre-fermentative heating (H15 and H30), despite duration of prolonged maceration. The most abundant minerals in investigated wine were potassium (K) among macroelements and iron (Fe) among microelements. The significantly highest concentration of iron (Fe) was found in the treatment equally affected with both pre-fermentative heating and prolonged post-fermentative maceration (H30). On the other hand, among the macroelements, the highest concentration of calcium (Ca) was found in treatments subjected to pre-fermentative heating (H15 and H30) regardless of maceration duration. Obtained results suggested that Teran red wine, affected with particular vinification processes considered as strong source of several micro- and macroelements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Fumica, Orbanić¹, Sara, Rossi¹, Ena, Bestulić¹, Karin, Kovačević Ganić², Natka, Ćurko², Marina, Tomašević², Tomislav, Plavša¹, Ana, Jeromel³, Sanja, Radeka¹

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
2. University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
3. University of Zagreb, Faculty of Agriculture, Department of Viticulture and Enology, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Contact the author*

Keywords

Teran grape variety, mineral composition, pre-fermentative mash treatment, prolonged ma-ceration

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.