terclim by ICS banner
IVES 9 IVES Conference Series 9 DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

Abstract

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine. Respectively, macerations durated 15 and 30 days in total, including either pre-fermentative cooling or heating. Macro- (K, Ca, Mg, Na) and microelements (Al, Cu, Fe, Mn) were determined using the Optima DV 2000 inductively coupled plasma – optical emission spectrometer (Perkin Elmer, Shelton, Connecticut, USA) equipped with a Meinhard spray chamber, nebulizer, and peristaltic sample delivery system. The analysed elements were identified in line with ICP-OES using the PerkinElmer’s WinLab 1.35 software and quantified by direct calibration method. One-way analysis of variance (ANOVA) and Fisher’s least significance difference (LSD) test were used to compare mean values (p < 0.05). Statistics were performed using Statistica 10.0. software (Sta-Soft Inc. Tulsa, OK). The obtained results showed that the total content of macroelements in investigated wine ranged from 939.03 to 1038.57 mgL-¹. The total content of microelements ranged from 3.09 to 6.37 mgL-1, where was found that significantly the highest were treatments submitted to pre-fermentative heating (H15 and H30), despite duration of prolonged maceration. The most abundant minerals in investigated wine were potassium (K) among macroelements and iron (Fe) among microelements. The significantly highest concentration of iron (Fe) was found in the treatment equally affected with both pre-fermentative heating and prolonged post-fermentative maceration (H30). On the other hand, among the macroelements, the highest concentration of calcium (Ca) was found in treatments subjected to pre-fermentative heating (H15 and H30) regardless of maceration duration. Obtained results suggested that Teran red wine, affected with particular vinification processes considered as strong source of several micro- and macroelements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Fumica, Orbanić¹, Sara, Rossi¹, Ena, Bestulić¹, Karin, Kovačević Ganić², Natka, Ćurko², Marina, Tomašević², Tomislav, Plavša¹, Ana, Jeromel³, Sanja, Radeka¹

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
2. University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
3. University of Zagreb, Faculty of Agriculture, Department of Viticulture and Enology, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Contact the author*

Keywords

Teran grape variety, mineral composition, pre-fermentative mash treatment, prolonged ma-ceration

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.