terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Abstract

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF). Our aim was to study the effect of FA addition in natural grape must without SO₂ on alcoholic and malolactic fermentation. AF was performed on Muscat of Alexandria grape must without SO₂ under two different conditions. i) Grape must 1 without FA, pH 3.49 and ii) Grape must 2 with 0.6 g/L of FA, pH 3.39; both had an L-malic acid concentration of 1.44 g/L. AF was developed at 20°C and spontaneously, monitored by must density determination. The evolution of L-malic acid and FA was monitored enzymatically⁵ and plate counts were performed for Saccharomyces, non-Saccharomyces and LAB populations. In both grape musts, no significant differences were observed in the development of AF. In grape must 1 MLF was performed during AF and produced a lactic bite. A progressive decrease in FA was observed in grape must 2 during AF, reaching 0.087 g/L at the end. From the wine obtained from grape must 2, two conditions were prepared i) a wine uncorrected with FA with a concentration of 0.087 g/L and ii) a wine with FA correction to 0.6 g/L. MLF was tried to take place at a temperature of 20°C under two new conditions, i) spontaneous and ii) with inoculation of O. oeni VP41 (Lallemand S.A.). MLF was monitored following the evolution of L-malic acid and LAB populations by plate count. MLF was not performed in all conditions, except for wines without FA correction inoculated with LAB. In conclusion, the addition of FA in must at pH 3.5 without SO₂ with low initial LAB populations may be an effective strategy to prevent MLF during AF in conditions of absence of SO₂. However, FA supplementation in the grape juice will not inhibit the subsequent development of the MFL in the wine, since a large part of this acid is metabolized by the yeasts, being necessary supplementing with FA again to ensure the non-development of malolactic fermentation in the case of high LAB populations.

 

1. SUMBY, K.M., BARTLE, L., GRBIN, P.R. JIRANEK V., 2019. Measures to improve wine malolactic fermentation, Applied Microbiology and Biotechnology, vol 103, pp. 2033–2051.
2. Bauer R., Dicks L. M. T. 2004. Control of malolactic fermentation in wine A Review, South African Journal for Enology and Viticulture 25:74⟨88.
3. OIV, 2021. International Organization of Vine and Wine. Summary of Resolutions Adopted in 2021 by the 19th General Assembly of the OIV- Paris (France).
4. Morata A., Bañuelos M. A., López C., Song C., Vejarano R., Loira I., PALOMERO F. , Suarez Lepe J. A. 2020. Use of fumaric acid to control pH and inhibit malolactic fermentation in wines, Food Additives & Contaminants: Part A, 37:2, 228-238
5. FERNÁNDEZ-VÁSQUEZ D., ROZÈS N., CANALS J.M., BORDONS A., REGUANT C., ZAMORA F. 2021. New enzymatic method for estimating fumaric acid in wines. OENO One 2021, 3, 273-281.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Violeta García-Viñola¹, Montse Poblet¹, Albert Bordons², Fernando Zamora³, Joan Miquel Canals³, Cristina Reguant² y Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili
2. Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
3. Grup de Tecnologia Enològica Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

Fumaric acid, Alcoholic fermentation, Malolactic fermentation, Spontaneous fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”