terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Abstract

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF). Our aim was to study the effect of FA addition in natural grape must without SO₂ on alcoholic and malolactic fermentation. AF was performed on Muscat of Alexandria grape must without SO₂ under two different conditions. i) Grape must 1 without FA, pH 3.49 and ii) Grape must 2 with 0.6 g/L of FA, pH 3.39; both had an L-malic acid concentration of 1.44 g/L. AF was developed at 20°C and spontaneously, monitored by must density determination. The evolution of L-malic acid and FA was monitored enzymatically⁵ and plate counts were performed for Saccharomyces, non-Saccharomyces and LAB populations. In both grape musts, no significant differences were observed in the development of AF. In grape must 1 MLF was performed during AF and produced a lactic bite. A progressive decrease in FA was observed in grape must 2 during AF, reaching 0.087 g/L at the end. From the wine obtained from grape must 2, two conditions were prepared i) a wine uncorrected with FA with a concentration of 0.087 g/L and ii) a wine with FA correction to 0.6 g/L. MLF was tried to take place at a temperature of 20°C under two new conditions, i) spontaneous and ii) with inoculation of O. oeni VP41 (Lallemand S.A.). MLF was monitored following the evolution of L-malic acid and LAB populations by plate count. MLF was not performed in all conditions, except for wines without FA correction inoculated with LAB. In conclusion, the addition of FA in must at pH 3.5 without SO₂ with low initial LAB populations may be an effective strategy to prevent MLF during AF in conditions of absence of SO₂. However, FA supplementation in the grape juice will not inhibit the subsequent development of the MFL in the wine, since a large part of this acid is metabolized by the yeasts, being necessary supplementing with FA again to ensure the non-development of malolactic fermentation in the case of high LAB populations.

 

1. SUMBY, K.M., BARTLE, L., GRBIN, P.R. JIRANEK V., 2019. Measures to improve wine malolactic fermentation, Applied Microbiology and Biotechnology, vol 103, pp. 2033–2051.
2. Bauer R., Dicks L. M. T. 2004. Control of malolactic fermentation in wine A Review, South African Journal for Enology and Viticulture 25:74⟨88.
3. OIV, 2021. International Organization of Vine and Wine. Summary of Resolutions Adopted in 2021 by the 19th General Assembly of the OIV- Paris (France).
4. Morata A., Bañuelos M. A., López C., Song C., Vejarano R., Loira I., PALOMERO F. , Suarez Lepe J. A. 2020. Use of fumaric acid to control pH and inhibit malolactic fermentation in wines, Food Additives & Contaminants: Part A, 37:2, 228-238
5. FERNÁNDEZ-VÁSQUEZ D., ROZÈS N., CANALS J.M., BORDONS A., REGUANT C., ZAMORA F. 2021. New enzymatic method for estimating fumaric acid in wines. OENO One 2021, 3, 273-281.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Violeta García-Viñola¹, Montse Poblet¹, Albert Bordons², Fernando Zamora³, Joan Miquel Canals³, Cristina Reguant² y Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili
2. Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
3. Grup de Tecnologia Enològica Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

Fumaric acid, Alcoholic fermentation, Malolactic fermentation, Spontaneous fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.