terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

Abstract

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2]. Nevertheless, this by-product could become a source of interesting compounds, such as mannoprotein rich extracts (MRE). Therefore, the aim of this work was to obtain MRE from different lees, to characterize them, and to evaluate their effect on wine colour and on the phenolic composition of red wines.

Red, rosé and white wines were used as sources of lees, which were collected after the alcoholic fermentation with different Saccharomyces cerevisiae commercial varieties. The extraction of MRE was performed by physical extraction (autoclave) followed by a purification with ethanol. The protein and polysaccharidic moieties of the purified extracts were characterized by SDS-PAGE, Lowry method, HR-SEC-RID and HPLC-DAD-MS. The obtained MRE were added to a red wine (Vitis vinifera L. cv Tempranillo) and the changes in the phenolic composition and colour were analysed by HPLC-DAD-MS and triestimulus colorimetry, respectively, before and after the stabilization of the wine (involving cold treatment). Results obtained showed that the extraction yield of MRE was efficient (~ 40 mg/g wet lees) for all types of lees assayed, which supports the valorisation of wine lees as a sustainable source of MRE. Interestingly, MRE presented important structural and compositional differences, both in the protein content and in the polysaccharidic profile, although the source of lees, namely red, white and rosé wines, was not the main factor determining these differences, but the winemaking techniques or the S. cerevisiae strain employed. Furthermore, the addition of the MRE to red wine had an effect on the stabilization of wine colour and its phenolic content that rely mainly on the saccharidic characteristics of each MRE. These results pointed out that MRE from wine less could be a potential tool to improve the colloidal stability of wine phenolic compounds.

 

1. Oliveira & Duarte, 2016. Front. Environ. Sci. Eng., 10(1): 168–176.
2. De Iseppi et al., 2020. Food Res. Int., 137, 109352. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marcos, Martín-Andrés¹; Ignacio, García-Estévez¹; M. Teresa, Escribano-Bailón¹; Elvira Manjón¹

1. Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

lees, mannoprotein, colour wine, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.