terclim by ICS banner
IVES 9 IVES Conference Series 9 ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Abstract

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].

The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

When corks are inserted in bottlenecks, there is initial oxygen released (IOR) due to the compression exerted to accommodate them in the volume of the bottleneck. Then starts contribution of the transfer between the closure and the glass together through the cork.

The initial release of oxygen is significant compared to the transfer through the cork itself and has been reported around 60% to 70% of the total oxygen ingress in a bottle after the first month and around 90% to 97% after the second, either for corks tested under dry or under wine contact condition [3]. In a study designed for sparkling corks, inerting procedure allowed to reduce the initial oxygen release by around 1.5mg [4]. An identical procedure is used in the scope of oxygen transfer measurements as a preparation for the corks [5].

The current work aims at estimating the IOR of natural corks. Natural corks of a superior grade, 49 mm length and 24 mm diameter, ready for use were purged with nitrogen for 3 months to displace oxygen from cork cells. Then corks were inserted in bottles with controlled bottlenecks and oxygen ingress monitored using the non-invasive methodology [3] for two months. At 64 days, it was observed that corks submitted to the purging procedure released 1.4 mg of oxygen less. In a preliminary experiment purging for 1 month, the reduction of oxygen ingress was around 7% more which suggests that the additional months did not change much oxygen from the cork cells.

The ongoing project aims to consolidate the estimation of the IOR value and to be extended to micro agglomerated cork stoppers.

 

1. Singleton, Vernon L. 1987. “Oxygen with Phenols and Related Reactions in Musts, Wines, and Model Systems: Observations and Practical Implications.” Am J Enol Vitic. 69-77. doi:10.5344/ajev.1987.38.1.69.
2. Reeves, Malcolm J. 2009. “Packaging and the Shelf Life of Wine.” Em Food Packaging and Shelf Life A Practical Guide, de Gordon L. Robertson, 231- 257. CRC Press. doi:10.1201/9781420078459-c13.
3. Ana C. Lopes Cardoso, Chandisree Rajbux, Cristina L. M. Silva, Fátima Poças. 2022. “Modelling oxygen ingress through cork closures. Impact of test conditions.” Journal of Food Engineering 331. doi:10.1016/j.jfoodeng.2022.111105.
4. B. Villedey, S. Callas, A. Descôtes. 2021. Le Vigneron Champenois, 54-69.
5. EXCELL, Laboratoire FRANCE. 2018. “Study of Oxygen Permeability of Technical Corks.” Test Report. Contract No.: N°2017-05- 013 – N°2017-09-001., Merignac.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

C. Mariana Machado¹ and Ana Lopes Cardoso¹

1. Cork Supply Portugal, S.A., Rua Nova do Fial, 102, 4535-465 São Paio de Oleiros, Portugal

Contact the author*

Keywords

Oxygen, Corks, Bottle, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.