terclim by ICS banner
IVES 9 IVES Conference Series 9 EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

Abstract

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3). However, there are few studies on the migration of polyphenols from agglomerated corks treated with supercritical CO₂. Therefore, the present study aimed to quantify the polyphenols released by microagglomerated cork stoppers in hydroalcoholic solutions in comparison with those extracted from natural cork stoppers. Thus, extractions were performed on eight different batches of natural cork stoppers and eleven of microagglomerated cork stoppers treated with supercritical CO₂. For this, six stoppers from each batch were immersed in 400 mL of 12% ethanol solution at 40°C for 10 days. The nineteen macerates were then analyzed by HPLC-DAD-ESI-QQQ to identify and quantify the extracted polyphenols and suberic acid. The microagglomerated corks released significantly fewer polyphenols (i.e., 25 times less). Regarding suberic acid, no differences were observed between both types of cork stoppers. Then, according to the groups obtained by a hierarchical ascending classification based on polyphenol composition, the macerates were pooled in equal volumes to reconstitute four new macerates of natural and/or microagglomerated cork stoppers. These four samples were then submitted to a panel of thirteen judges to perform a sensory profile with olfacto-ry, taste, and mouthfeel descriptors. The results of this sensory profile showed that microagglomerated stoppers appeared to have the lowest overall impact on the olfactory and gustative perception of the hydroalcoholic solutions.

 

1. Culleré, L., Cacho, J., & Ferreira, V. (2009). Comparative study of the aromatic profile of different kinds of wine cork stoppers. Food chemistry, 112(2), 381-387.
2. Azevedo, J., Fernandes, I., Lopes, P., Roseira, I., Cabral, M., Mateus, N., & Freitas, V. (2014). Migration of phenolic compounds from different cork stoppers to wine model solutions : Antioxidant and biological relevance. European Food Research and Technology, 239(6), 951-960.
3. Reis, S. F., Coelho, E., Evtuguin, D. V., Coimbra, M. A., Lopes, P., Cabral, M., Mateus, N., & Freitas, V. (2020). Migration of Tannins and Pectic Polysaccharides from natural cork stoppers to the hydroalcoholic solution. Journal of Agricultural and Food Chemistry, 68(48), 14230-14242.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Anne-Laure Gancel¹, Michaël Jourdes¹, Alexandre Pons1, 2 and Pierre-Louis Teissedre1*

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon
2. Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine cork stoppers, polyphenols, suberic acid, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.