terclim by ICS banner
IVES 9 IVES Conference Series 9 EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

Abstract

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3). However, there are few studies on the migration of polyphenols from agglomerated corks treated with supercritical CO₂. Therefore, the present study aimed to quantify the polyphenols released by microagglomerated cork stoppers in hydroalcoholic solutions in comparison with those extracted from natural cork stoppers. Thus, extractions were performed on eight different batches of natural cork stoppers and eleven of microagglomerated cork stoppers treated with supercritical CO₂. For this, six stoppers from each batch were immersed in 400 mL of 12% ethanol solution at 40°C for 10 days. The nineteen macerates were then analyzed by HPLC-DAD-ESI-QQQ to identify and quantify the extracted polyphenols and suberic acid. The microagglomerated corks released significantly fewer polyphenols (i.e., 25 times less). Regarding suberic acid, no differences were observed between both types of cork stoppers. Then, according to the groups obtained by a hierarchical ascending classification based on polyphenol composition, the macerates were pooled in equal volumes to reconstitute four new macerates of natural and/or microagglomerated cork stoppers. These four samples were then submitted to a panel of thirteen judges to perform a sensory profile with olfacto-ry, taste, and mouthfeel descriptors. The results of this sensory profile showed that microagglomerated stoppers appeared to have the lowest overall impact on the olfactory and gustative perception of the hydroalcoholic solutions.

 

1. Culleré, L., Cacho, J., & Ferreira, V. (2009). Comparative study of the aromatic profile of different kinds of wine cork stoppers. Food chemistry, 112(2), 381-387.
2. Azevedo, J., Fernandes, I., Lopes, P., Roseira, I., Cabral, M., Mateus, N., & Freitas, V. (2014). Migration of phenolic compounds from different cork stoppers to wine model solutions : Antioxidant and biological relevance. European Food Research and Technology, 239(6), 951-960.
3. Reis, S. F., Coelho, E., Evtuguin, D. V., Coimbra, M. A., Lopes, P., Cabral, M., Mateus, N., & Freitas, V. (2020). Migration of Tannins and Pectic Polysaccharides from natural cork stoppers to the hydroalcoholic solution. Journal of Agricultural and Food Chemistry, 68(48), 14230-14242.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Anne-Laure Gancel¹, Michaël Jourdes¹, Alexandre Pons1, 2 and Pierre-Louis Teissedre1*

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon
2. Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine cork stoppers, polyphenols, suberic acid, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵