terclim by ICS banner
IVES 9 IVES Conference Series 9 FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Abstract

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

This study is aimed at evaluating factors affecting the solubility of Q in red wine. The role of anthocyanins and mannoproteins (MPs) was evaluated. The role of anthocyanins in Q solubility was evaluated by adding known amount of grape derived anthocyanins to a model solution containing 30 mg/L of quercetin. Data showed that the solubility of Q increased by increasing the amount of grape derived anthocyanins in model solution until a complete dissolution of 30 mg/L of Q when 740,8903 ± 17,069 mg//l of anthocyanins were added. This is likely due to the π-π interactions between anthocyanins and Q determining the formation of stable copigmentation complexes in red wine (Whaterhouse 2016). In a further experiment the addition of two different mannoproteins to a model solution containing 30 mg/L of quercetin and grape derived anthocyanins was also tested in controlled conditions. A slight positive effect of MPs on quercetin solubility (until the twelve % of value detected in control samples) was observed. It is therefore likely that group of compounds tested are involved in Q colloidal stability.

 

1. Angelita Gambuti1 • Luigi Picariello1 • Alessandra Rinaldi1,2 • Martino Forino1 • Giuseppe Blaiotta1 • Virginie Moine2 • Luigi Moio New insights into the formation of precipitates of quercetin in Sangiovese wines (2020)
2. Waterhouse AL, Sacks GL, Jeffery DW (2016) Understanding wine chemistry. Wiley, Hoboken

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Alessandra Luciano¹, Alessandra Rinaldi¹, Luigi Picariello¹, Luigi Moio¹, Angelita Gambuti¹

1. Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli ⟨Federico II⟨, Viale Italia, Avellino 83100, Italy

Contact the author*

Keywords

Quercetin, solubility, wine, anthocyanins, mannoproteins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.