terclim by ICS banner
IVES 9 IVES Conference Series 9 IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Abstract

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters. This study investigated the impact of two L. thermotolerans strains (LT2 and LT5) in fermentation of Malvazija istarska, a Croatian white grape cultivar that in some terroirs and growing seasons requires acidification and/or reduction of alcohol level. A strain of Saccharomyces cerevisiae (EC1118) was sequentially inoculated to finish LT fermentations, and as a monoculture control. Standard physico-chemical parameters were determined by the OIV methods. Organic acids, glycerol, and pathogenesis-related (PR) proteins were determined by HPLC-DAD. Targeted UPLC-MS/MS was performed to analyse phenolic composition, while total phenols were measured by UV/Vis spectrophotometry. Volatile aroma compounds were determined by untargeted metabolomics using GC×GC/TOF-MS complemented by GC-MS targeted analysis. Both L. thermotolerans starters increased total acidity, while the concentration of lactic acid increased from 0.08 g/L in control to 0.73 g/L in LT2 and 0.88 g/L in LT5 treatment wine. Significantly higher concentration of glycerol was determined in wines produced by LT2 strain. Phenol composition was affected without a uniform pattern, while total phenolic content was decreased by LT2 and increased by LT5 strain. Among PR proteins, only a single thaumatin-like protein was significantly reduced by both strains. The use of L. thermotolerans significantly modulated the volatile composition of wines and the most pronounced changes included increased linalool, ethyl lactate, ethyl isobutyrate, ethyl phenyl lactate, and diethyl succinate concentrations. Results from this study contribute to the overall knowledge and understanding of L. thermotolerans contribution to sequential fermentation, with the emphasis on its oenological potential to produce wines with improved acidity and complexity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Doris Delač Salopek¹, Ivana Horvat¹, Silvia Carlin², Urska Vrhovsek², Ana Hranilović3,4, Sanja Radeka¹, Tomislav Plavša¹, Ivana Rajnović⁵, Tanja Vojvoda Zeljko⁶, Igor Lukić1,7,*

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia (* correspondence: )
2. Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via  E. Mach 1, 38098 San Michele all’Adige, TN, Italy
3. Department of Wine Science, The University of Adelaide, Urrbrae, SA 5064, Australia
4. Laffort, 11 Rue Aristide Berges, 33270 Floirac, France
5. Department of Microbiology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
6. Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
7. Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia 

Contact the author*

Keywords

sequential inoculation, Lachancea thermotolerans, acidity, 2D gas chromatography

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.