terclim by ICS banner
IVES 9 IVES Conference Series 9 IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Abstract

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters. This study investigated the impact of two L. thermotolerans strains (LT2 and LT5) in fermentation of Malvazija istarska, a Croatian white grape cultivar that in some terroirs and growing seasons requires acidification and/or reduction of alcohol level. A strain of Saccharomyces cerevisiae (EC1118) was sequentially inoculated to finish LT fermentations, and as a monoculture control. Standard physico-chemical parameters were determined by the OIV methods. Organic acids, glycerol, and pathogenesis-related (PR) proteins were determined by HPLC-DAD. Targeted UPLC-MS/MS was performed to analyse phenolic composition, while total phenols were measured by UV/Vis spectrophotometry. Volatile aroma compounds were determined by untargeted metabolomics using GC×GC/TOF-MS complemented by GC-MS targeted analysis. Both L. thermotolerans starters increased total acidity, while the concentration of lactic acid increased from 0.08 g/L in control to 0.73 g/L in LT2 and 0.88 g/L in LT5 treatment wine. Significantly higher concentration of glycerol was determined in wines produced by LT2 strain. Phenol composition was affected without a uniform pattern, while total phenolic content was decreased by LT2 and increased by LT5 strain. Among PR proteins, only a single thaumatin-like protein was significantly reduced by both strains. The use of L. thermotolerans significantly modulated the volatile composition of wines and the most pronounced changes included increased linalool, ethyl lactate, ethyl isobutyrate, ethyl phenyl lactate, and diethyl succinate concentrations. Results from this study contribute to the overall knowledge and understanding of L. thermotolerans contribution to sequential fermentation, with the emphasis on its oenological potential to produce wines with improved acidity and complexity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Doris Delač Salopek¹, Ivana Horvat¹, Silvia Carlin², Urska Vrhovsek², Ana Hranilović3,4, Sanja Radeka¹, Tomislav Plavša¹, Ivana Rajnović⁵, Tanja Vojvoda Zeljko⁶, Igor Lukić1,7,*

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia (* correspondence: )
2. Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via  E. Mach 1, 38098 San Michele all’Adige, TN, Italy
3. Department of Wine Science, The University of Adelaide, Urrbrae, SA 5064, Australia
4. Laffort, 11 Rue Aristide Berges, 33270 Floirac, France
5. Department of Microbiology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
6. Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
7. Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia 

Contact the author*

Keywords

sequential inoculation, Lachancea thermotolerans, acidity, 2D gas chromatography

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.