terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Abstract

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).

Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing. Each juice had been clarified with and without pectolytic enzymes and spiked with different levels of grape solids and diammonium phosphate. The purpose of this experiment plan was to create four modalities with different nitrogen / lipids balances. These musts were fermented in laboratory normalized conditions. In addition of oenological analysis, free fatty acid and sterol were quantified in grape juices. After fermentation, varietal thiols, ethyl esters, higher alcohols and their acetates have been quantified.

Results showed that the nitrogen / lipids balance of grape must affect the concentration of aromatic compounds in wine, especially on the bioconversion of higher alcohols and 3-sulfanylhexanol into their acetates. Nitrogen supplementation was thus confirmed as having a positive effect on the yeast to ester acetates production. However, for the same level of nitrogen, lipids concentration may modulate ester acetates. More generally, a positive correlation has been observed between the nitrogen / lipids ratio and quantity of ester acetates in wine. Linear relation appeared between this nitrogen / lipids ratio and acetates / higher alcohols ratio.

Consequently, the nitrogen / lipids ratio seems to be a useful indicator for the winemaker to better control the desired aroma balance in white wines.

 

1. Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.-M.; Dequin, S.; Mouret, J.-R.  Appl. Microbiol. Biotechnol. 2015, 99, 2291-2304.
2. Casalta, E.; Salmon, J.-M.; Picou, C.; Sablayrolles, J.-M.; Am. J. Enol. Vitic. 2019, 70 (2), 147-153.
3. Caboulet D., Roy A., Ducasse M.A., Cottereau P., Solanet D., Dagan L., Silvano A., Ortiz-jumien A. et Schneider R. (2013). Rev. des Oen. 2013, 149 S, 26-28.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Frederic Charrier1, Stephane Delpech², Laurent Dagan², Erik Casalta³, Jean-Roch Mouret³ et Philippe Cottereau⁴

1. Institut Français de la Vigne et du Vin, Château de la Frémoire, 44 120 Vertou
2. Nyseos, 53 rue Claude François, 34 080 Montpellier
3. Inrae SPO, 2 place Viala, 34 060 Montpellier
4. Institut Français de la Vigne et du Vin, 7 avenue Yves Cazeaux, 30 230 Rodhilan

Contact the author*

Keywords

white must, nitrogen, lipids, esters

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.