terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Abstract

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).

Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing. Each juice had been clarified with and without pectolytic enzymes and spiked with different levels of grape solids and diammonium phosphate. The purpose of this experiment plan was to create four modalities with different nitrogen / lipids balances. These musts were fermented in laboratory normalized conditions. In addition of oenological analysis, free fatty acid and sterol were quantified in grape juices. After fermentation, varietal thiols, ethyl esters, higher alcohols and their acetates have been quantified.

Results showed that the nitrogen / lipids balance of grape must affect the concentration of aromatic compounds in wine, especially on the bioconversion of higher alcohols and 3-sulfanylhexanol into their acetates. Nitrogen supplementation was thus confirmed as having a positive effect on the yeast to ester acetates production. However, for the same level of nitrogen, lipids concentration may modulate ester acetates. More generally, a positive correlation has been observed between the nitrogen / lipids ratio and quantity of ester acetates in wine. Linear relation appeared between this nitrogen / lipids ratio and acetates / higher alcohols ratio.

Consequently, the nitrogen / lipids ratio seems to be a useful indicator for the winemaker to better control the desired aroma balance in white wines.

 

1. Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.-M.; Dequin, S.; Mouret, J.-R.  Appl. Microbiol. Biotechnol. 2015, 99, 2291-2304.
2. Casalta, E.; Salmon, J.-M.; Picou, C.; Sablayrolles, J.-M.; Am. J. Enol. Vitic. 2019, 70 (2), 147-153.
3. Caboulet D., Roy A., Ducasse M.A., Cottereau P., Solanet D., Dagan L., Silvano A., Ortiz-jumien A. et Schneider R. (2013). Rev. des Oen. 2013, 149 S, 26-28.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Frederic Charrier1, Stephane Delpech², Laurent Dagan², Erik Casalta³, Jean-Roch Mouret³ et Philippe Cottereau⁴

1. Institut Français de la Vigne et du Vin, Château de la Frémoire, 44 120 Vertou
2. Nyseos, 53 rue Claude François, 34 080 Montpellier
3. Inrae SPO, 2 place Viala, 34 060 Montpellier
4. Institut Français de la Vigne et du Vin, 7 avenue Yves Cazeaux, 30 230 Rodhilan

Contact the author*

Keywords

white must, nitrogen, lipids, esters

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.