terclim by ICS banner
IVES 9 IVES Conference Series 9 MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Abstract

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines. To this aim, diammonium phosphate was encapsulated mixed with a hydrophobic lipid matrix in two different supports designed to continuously release the salt for a final addition of 400 mg/L: a tablet-shaped support (Tb) of ~ 4 cm diameter and spherical microcapsules of ~0.2-1 mm diameter (Mc) obtained through spray cooling. The alcoholic fermentation was performed in triplicate at semi-industrial scale standardised conditions of turbidity (~100 NTU), yeast inoculum (200 mg/L) and fermentation temperature (19°C). Results were compared to those of wines fermented in absence of ammonium addition or supplemented with the same dose at the beginning of the alcoholic fermentation.

Among the metabolic compounds studied by GC-MS/MS, the production of acetate esters of higher alcohols was favoured by the Mc continuous ammonium release. This protocol almost doubled the total acetates formed in the untreated wines and increased ~33% and ~40% of those obtained with the one-shot supplementation and the Tb protocol respectively. Among alcohols, 2-phenylethanol and 2-methylbu-tanol were higher in the untreated wines and 1-propanol in the Mc protocol compared to others, even if the total amount of alcohols was not differentiated. Neither total fatty acids nor the corresponding ethyl esters were influenced by the nutrition protocol, even if some compounds were affected: ethyl hexanoate and ethyl octanoate were higher in the Mc protocol, differentiated from the Tb and one-shot protocols. Overall, nitrogen supplementation increased the total amount of esters in wines, being the Mc protocol the most performing, differentiated from the one-shot and Tb protocols that were statistically indistinguishable between them.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tomas Roman¹, Mauro Paolini¹, Adelaide Gallo1,2, Laura Barp1,3, Luigino Bortolotto⁴, Nicola Cappello¹, Roberto Larcher¹

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
3. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
4. Sintal Srl. Via dell’Artigianato n. 9/11, 36033, Isola Vicentina (VI), Italia

Contact the author*

Keywords

yeast nutrients, diammonium phosphate, aroma compounds, continuous supplementation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].