terclim by ICS banner
IVES 9 IVES Conference Series 9 MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Abstract

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines. To this aim, diammonium phosphate was encapsulated mixed with a hydrophobic lipid matrix in two different supports designed to continuously release the salt for a final addition of 400 mg/L: a tablet-shaped support (Tb) of ~ 4 cm diameter and spherical microcapsules of ~0.2-1 mm diameter (Mc) obtained through spray cooling. The alcoholic fermentation was performed in triplicate at semi-industrial scale standardised conditions of turbidity (~100 NTU), yeast inoculum (200 mg/L) and fermentation temperature (19°C). Results were compared to those of wines fermented in absence of ammonium addition or supplemented with the same dose at the beginning of the alcoholic fermentation.

Among the metabolic compounds studied by GC-MS/MS, the production of acetate esters of higher alcohols was favoured by the Mc continuous ammonium release. This protocol almost doubled the total acetates formed in the untreated wines and increased ~33% and ~40% of those obtained with the one-shot supplementation and the Tb protocol respectively. Among alcohols, 2-phenylethanol and 2-methylbu-tanol were higher in the untreated wines and 1-propanol in the Mc protocol compared to others, even if the total amount of alcohols was not differentiated. Neither total fatty acids nor the corresponding ethyl esters were influenced by the nutrition protocol, even if some compounds were affected: ethyl hexanoate and ethyl octanoate were higher in the Mc protocol, differentiated from the Tb and one-shot protocols. Overall, nitrogen supplementation increased the total amount of esters in wines, being the Mc protocol the most performing, differentiated from the one-shot and Tb protocols that were statistically indistinguishable between them.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tomas Roman¹, Mauro Paolini¹, Adelaide Gallo1,2, Laura Barp1,3, Luigino Bortolotto⁴, Nicola Cappello¹, Roberto Larcher¹

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
3. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
4. Sintal Srl. Via dell’Artigianato n. 9/11, 36033, Isola Vicentina (VI), Italia

Contact the author*

Keywords

yeast nutrients, diammonium phosphate, aroma compounds, continuous supplementation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].