terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Abstract

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Wines were produced with a standard protocol with Turbiana grapes with two different yeasts. During the alcoholic fermentation of the must additions of inorganic or organic nitrogen supply were made. Wines were bottled in inert conditions in flint bottles and exposed for 30 days to light at controlled temperature of 20°C. Subsequently the VSCs profile of the wines was analyzed using GC-MS techniques. Wines were then subjected to the sorting task sensory analysis.

The VSCs profile analyzed showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide and dimethyl trisulfide. The variability given by the yeasts leads to statistically significant differences only for diethyl sulfide and dimethyl disulfide. Regarding the differences given by the residual nitrogen, the samples in the transparent bottles with higher residual nitrogen showed a greater increase of sulfur compounds. Wines with a higher organic residual nitrogen showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide, diethyl sulfide and dimethyl disulfide. Linear correla-tions were found between residual nitrogen in wines and carbon disulfide, methanethiol and dimethyl sulfide. The sensory analysis sorting task highlighted the formation of two main classifications made up of wines with a low residual nitrogen and wines with a high residual organic nitrogen. This study showed the great impact of light exposure in transparent bottles has on the aromatic and sensory quality and how the post-fermentation residual nitrogen, especially for organic nitrogen, in the wines can worsen this qualitative deterioration. This underlines the impact of the presence of residual nitrogen on the stability of the wine during maturation, placing the attention on the dose of nitrogenous nutrition introduced during alcoholic fermentation. The choice of yeast strain seems to have an influence, albeit minor, on the development of VSCs compounds in wines exposed to light.

ACKNOWLEDGMENTS: The present work was supported by Laffort, France.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Beatrice Perina1, Virginie Moine², Arnaud Massot², Davide Slaghenaufi¹, Giovanni Luzzini¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona
2. Biolaffort, France

Contact the author*

Keywords

Light-induced oxidation, Lugana wine, VSCs profile, Nitrogen

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.