terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Abstract

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Wines were produced with a standard protocol with Turbiana grapes with two different yeasts. During the alcoholic fermentation of the must additions of inorganic or organic nitrogen supply were made. Wines were bottled in inert conditions in flint bottles and exposed for 30 days to light at controlled temperature of 20°C. Subsequently the VSCs profile of the wines was analyzed using GC-MS techniques. Wines were then subjected to the sorting task sensory analysis.

The VSCs profile analyzed showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide and dimethyl trisulfide. The variability given by the yeasts leads to statistically significant differences only for diethyl sulfide and dimethyl disulfide. Regarding the differences given by the residual nitrogen, the samples in the transparent bottles with higher residual nitrogen showed a greater increase of sulfur compounds. Wines with a higher organic residual nitrogen showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide, diethyl sulfide and dimethyl disulfide. Linear correla-tions were found between residual nitrogen in wines and carbon disulfide, methanethiol and dimethyl sulfide. The sensory analysis sorting task highlighted the formation of two main classifications made up of wines with a low residual nitrogen and wines with a high residual organic nitrogen. This study showed the great impact of light exposure in transparent bottles has on the aromatic and sensory quality and how the post-fermentation residual nitrogen, especially for organic nitrogen, in the wines can worsen this qualitative deterioration. This underlines the impact of the presence of residual nitrogen on the stability of the wine during maturation, placing the attention on the dose of nitrogenous nutrition introduced during alcoholic fermentation. The choice of yeast strain seems to have an influence, albeit minor, on the development of VSCs compounds in wines exposed to light.

ACKNOWLEDGMENTS: The present work was supported by Laffort, France.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Beatrice Perina1, Virginie Moine², Arnaud Massot², Davide Slaghenaufi¹, Giovanni Luzzini¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona
2. Biolaffort, France

Contact the author*

Keywords

Light-induced oxidation, Lugana wine, VSCs profile, Nitrogen

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.