terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Abstract

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Wines were produced with a standard protocol with Turbiana grapes with two different yeasts. During the alcoholic fermentation of the must additions of inorganic or organic nitrogen supply were made. Wines were bottled in inert conditions in flint bottles and exposed for 30 days to light at controlled temperature of 20°C. Subsequently the VSCs profile of the wines was analyzed using GC-MS techniques. Wines were then subjected to the sorting task sensory analysis.

The VSCs profile analyzed showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide and dimethyl trisulfide. The variability given by the yeasts leads to statistically significant differences only for diethyl sulfide and dimethyl disulfide. Regarding the differences given by the residual nitrogen, the samples in the transparent bottles with higher residual nitrogen showed a greater increase of sulfur compounds. Wines with a higher organic residual nitrogen showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide, diethyl sulfide and dimethyl disulfide. Linear correla-tions were found between residual nitrogen in wines and carbon disulfide, methanethiol and dimethyl sulfide. The sensory analysis sorting task highlighted the formation of two main classifications made up of wines with a low residual nitrogen and wines with a high residual organic nitrogen. This study showed the great impact of light exposure in transparent bottles has on the aromatic and sensory quality and how the post-fermentation residual nitrogen, especially for organic nitrogen, in the wines can worsen this qualitative deterioration. This underlines the impact of the presence of residual nitrogen on the stability of the wine during maturation, placing the attention on the dose of nitrogenous nutrition introduced during alcoholic fermentation. The choice of yeast strain seems to have an influence, albeit minor, on the development of VSCs compounds in wines exposed to light.

ACKNOWLEDGMENTS: The present work was supported by Laffort, France.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Beatrice Perina1, Virginie Moine², Arnaud Massot², Davide Slaghenaufi¹, Giovanni Luzzini¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona
2. Biolaffort, France

Contact the author*

Keywords

Light-induced oxidation, Lugana wine, VSCs profile, Nitrogen

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.