terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Abstract

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Wines were produced with a standard protocol with Turbiana grapes with two different yeasts. During the alcoholic fermentation of the must additions of inorganic or organic nitrogen supply were made. Wines were bottled in inert conditions in flint bottles and exposed for 30 days to light at controlled temperature of 20°C. Subsequently the VSCs profile of the wines was analyzed using GC-MS techniques. Wines were then subjected to the sorting task sensory analysis.

The VSCs profile analyzed showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide and dimethyl trisulfide. The variability given by the yeasts leads to statistically significant differences only for diethyl sulfide and dimethyl disulfide. Regarding the differences given by the residual nitrogen, the samples in the transparent bottles with higher residual nitrogen showed a greater increase of sulfur compounds. Wines with a higher organic residual nitrogen showed significant differences for carbon disulfide, methanethiol, dimethyl sulfide, diethyl sulfide and dimethyl disulfide. Linear correla-tions were found between residual nitrogen in wines and carbon disulfide, methanethiol and dimethyl sulfide. The sensory analysis sorting task highlighted the formation of two main classifications made up of wines with a low residual nitrogen and wines with a high residual organic nitrogen. This study showed the great impact of light exposure in transparent bottles has on the aromatic and sensory quality and how the post-fermentation residual nitrogen, especially for organic nitrogen, in the wines can worsen this qualitative deterioration. This underlines the impact of the presence of residual nitrogen on the stability of the wine during maturation, placing the attention on the dose of nitrogenous nutrition introduced during alcoholic fermentation. The choice of yeast strain seems to have an influence, albeit minor, on the development of VSCs compounds in wines exposed to light.

ACKNOWLEDGMENTS: The present work was supported by Laffort, France.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Beatrice Perina1, Virginie Moine², Arnaud Massot², Davide Slaghenaufi¹, Giovanni Luzzini¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona
2. Biolaffort, France

Contact the author*

Keywords

Light-induced oxidation, Lugana wine, VSCs profile, Nitrogen

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.