GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

Abstract

Context and purpose of the study ‐ Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries. This study aims (i) to develop a temperature‐based model that can predict a range of target sugar concentrations for various cultivars of Vitis vinifera L and (ii) develop extensive classifications for the sugar ripeness of cultivars using the model.

Material and methods ‐ Time series of sugar concentrations were collected from research institutes, extension services and private companies from various European countries. The Day of the Year (DOY) to reach the specified target sugar concentration (170, 180, 190, 200, 210, and 220 g/l) was determined and a range of models tested using these DOYs to develop the best fit model for Vitis vinifera L.

Results ‐ The best fit linear model– Growing Degree Days (parameters: base temperature (t0) = 0°C, start date (Tb) = 91 or 1 April), Northern Hemisphere) – represented the model that required the least parameters and therefore the simplest in application. The model was used to characterise and classify a wide range of cultivars for DOY to reach target sugar concentrations.
The model is referred to as the Grapevine Sugar Ripeness Model (GSR). It is viticulturist‐ friendly as it’s simple in form (linear) and its growing degree day units are easily calculated by adding average temperatures (base temperature was optimized at 0°C) derived from weather stations from the 91th day of the year (Northern Hemisphere). The classifications based on this model can inform cultivar choice as an alternative adaptation strategy to climate change, where changing cultivars may prevent the harvesting of grapes at high sugar concentrations which leads to higher alcohol wines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Amber K. PARKER (1), Inaki GARCÍA DE CORTÁZAR‐ATAURI (2), Laurence GÉNY (3), Jean‐Laurent SPRING (4), Agnès DESTRAC (5), Hans SCHULTZ (6), Manfred STOLL (6), Daniel MOLITOR (7), Thierry LACOMBE (8), Antonio GRACA (9), Christine MONAMY (10), Paolo STORCHI (11), Mike TROUGHT (12), Rainer HOFMANN (1), Cornelis VAN LEEUWEN (5)

(1) Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
(2) Institut National de la Recherche Agronomique (INRA), US 1116 AGROCLIM, F-84914 Avignon, France
(3) Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, Unité de Recherche Oenologie EA 4577 – USC 1366 INRA, 210 chemin de Leysotte – CS 50008, 33882 Villenave d’Ornon cedex
(4) Agroscope, Av. de Rochettaz 21,1009 Pully, Switzerland
(5) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33883 Villenave d’Ornon, France
(6) Hochschule, Giesenheim University, Von-Lade-Straße 1, D-65366 Geisenheim
(7) Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department 41, rue du Brill, L-4422 Belva, Luxembourg
(8) Institut National de la Recherche Agronomique (INRA), AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier, France
(9) Sogrape Vinhos S.A., R. 5 de Outubro 558, 4430-809 Avintes, Portugal
(10) Bureau Interprofessionnel des Vins de Bourgogne – BIVB, 12 boulevard Bretonnière, 21200, Beaune, France
(11) CREA – Centro di ricerca Viticoltura ed Enologia, Viale Santa Margherita 80 52100 – Arezzo, Italy 12The New Zealand Institute for Plant and Food Research Limited, Blenheim 7240, New Zealand, Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand

Contact the author

Keywords

modelling, temperature, sugar, cultivars, climate change

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.