GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

Abstract

Context and purpose of the study ‐ Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries. This study aims (i) to develop a temperature‐based model that can predict a range of target sugar concentrations for various cultivars of Vitis vinifera L and (ii) develop extensive classifications for the sugar ripeness of cultivars using the model.

Material and methods ‐ Time series of sugar concentrations were collected from research institutes, extension services and private companies from various European countries. The Day of the Year (DOY) to reach the specified target sugar concentration (170, 180, 190, 200, 210, and 220 g/l) was determined and a range of models tested using these DOYs to develop the best fit model for Vitis vinifera L.

Results ‐ The best fit linear model– Growing Degree Days (parameters: base temperature (t0) = 0°C, start date (Tb) = 91 or 1 April), Northern Hemisphere) – represented the model that required the least parameters and therefore the simplest in application. The model was used to characterise and classify a wide range of cultivars for DOY to reach target sugar concentrations.
The model is referred to as the Grapevine Sugar Ripeness Model (GSR). It is viticulturist‐ friendly as it’s simple in form (linear) and its growing degree day units are easily calculated by adding average temperatures (base temperature was optimized at 0°C) derived from weather stations from the 91th day of the year (Northern Hemisphere). The classifications based on this model can inform cultivar choice as an alternative adaptation strategy to climate change, where changing cultivars may prevent the harvesting of grapes at high sugar concentrations which leads to higher alcohol wines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Amber K. PARKER (1), Inaki GARCÍA DE CORTÁZAR‐ATAURI (2), Laurence GÉNY (3), Jean‐Laurent SPRING (4), Agnès DESTRAC (5), Hans SCHULTZ (6), Manfred STOLL (6), Daniel MOLITOR (7), Thierry LACOMBE (8), Antonio GRACA (9), Christine MONAMY (10), Paolo STORCHI (11), Mike TROUGHT (12), Rainer HOFMANN (1), Cornelis VAN LEEUWEN (5)

(1) Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
(2) Institut National de la Recherche Agronomique (INRA), US 1116 AGROCLIM, F-84914 Avignon, France
(3) Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, Unité de Recherche Oenologie EA 4577 – USC 1366 INRA, 210 chemin de Leysotte – CS 50008, 33882 Villenave d’Ornon cedex
(4) Agroscope, Av. de Rochettaz 21,1009 Pully, Switzerland
(5) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33883 Villenave d’Ornon, France
(6) Hochschule, Giesenheim University, Von-Lade-Straße 1, D-65366 Geisenheim
(7) Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department 41, rue du Brill, L-4422 Belva, Luxembourg
(8) Institut National de la Recherche Agronomique (INRA), AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier, France
(9) Sogrape Vinhos S.A., R. 5 de Outubro 558, 4430-809 Avintes, Portugal
(10) Bureau Interprofessionnel des Vins de Bourgogne – BIVB, 12 boulevard Bretonnière, 21200, Beaune, France
(11) CREA – Centro di ricerca Viticoltura ed Enologia, Viale Santa Margherita 80 52100 – Arezzo, Italy 12The New Zealand Institute for Plant and Food Research Limited, Blenheim 7240, New Zealand, Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand

Contact the author

Keywords

modelling, temperature, sugar, cultivars, climate change

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques.

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.

Terroir and precision viticulture: are they compatible?

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale.