terclim by ICS banner
IVES 9 IVES Conference Series 9 VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Abstract

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated. In addition, opposed to conventional solvent extraction methods, new trends lead to the employment of eco-friendly extraction technologies as supercritical CO₂ (SC CO₂) extraction. The aim of this research was to study impact of low and high intensity pulsed electric fields (PEF) pretreatments prior to SC CO₂ extraction of grape seed oil, from Graševina grape pomace, on the oil yield and chemical composition. Results showed that PEF assisted SC CO₂ extracted more than 95% of pomace lipids and contributed to significantly higher concentrations of both lipophilic (sterols and tocochromanols) and hydrophilic antioxidants (polyphenolic compounds) in grape seed oil. These concentrations were up to 10% higher for total sterols, but even more than 50% higher for total tocochromanols and total individual polyphenols, respectively. PEF pretreated samples showed significantly higher concentrations of stigmasterol, β-sitosterol, Δ5-avenasterol, Δ5,24-stigmastadienol and Δ7-avenasterol. Moreover, significantly higher concentrations of all analyzed tocochromanols were also found in these samples, primarily of β-tocopherol, plastochromanol-8 and α-tocotrienol that showed more than two times higher values. In addition, PEF pretreatments significantly contributed to the extraction of all individual polyphenolic compounds, while more than two times higher concentrations were found for gallic, p-coumaric and ferulic acids. Moreover, PEF assisted SC CO₂ extraction showed favorable effect on the extraction of the most abundant fatty acid, linoleic acid. Finally, the highest concentrations of both lipophilic and hydrophilic compounds were extracted by PEF pretreatment of higher intensity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Natka Ćurko*, Katarina Lukić, Ana Jurinjak Tušek, Sandra Balbino, Tomislava Vukušić Pavičić, Marina Tomašević, Ivana Radojčić Redovniković, Karin Kovačević Ganić

University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia

Contact the author*

Keywords

Grape pomace, Grape seed oil, Pulsed electric fields (PEF), Supercritical CO₂ (SC CO₂)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.