terclim by ICS banner
IVES 9 IVES Conference Series 9 VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Abstract

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated. In addition, opposed to conventional solvent extraction methods, new trends lead to the employment of eco-friendly extraction technologies as supercritical CO₂ (SC CO₂) extraction. The aim of this research was to study impact of low and high intensity pulsed electric fields (PEF) pretreatments prior to SC CO₂ extraction of grape seed oil, from Graševina grape pomace, on the oil yield and chemical composition. Results showed that PEF assisted SC CO₂ extracted more than 95% of pomace lipids and contributed to significantly higher concentrations of both lipophilic (sterols and tocochromanols) and hydrophilic antioxidants (polyphenolic compounds) in grape seed oil. These concentrations were up to 10% higher for total sterols, but even more than 50% higher for total tocochromanols and total individual polyphenols, respectively. PEF pretreated samples showed significantly higher concentrations of stigmasterol, β-sitosterol, Δ5-avenasterol, Δ5,24-stigmastadienol and Δ7-avenasterol. Moreover, significantly higher concentrations of all analyzed tocochromanols were also found in these samples, primarily of β-tocopherol, plastochromanol-8 and α-tocotrienol that showed more than two times higher values. In addition, PEF pretreatments significantly contributed to the extraction of all individual polyphenolic compounds, while more than two times higher concentrations were found for gallic, p-coumaric and ferulic acids. Moreover, PEF assisted SC CO₂ extraction showed favorable effect on the extraction of the most abundant fatty acid, linoleic acid. Finally, the highest concentrations of both lipophilic and hydrophilic compounds were extracted by PEF pretreatment of higher intensity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Natka Ćurko*, Katarina Lukić, Ana Jurinjak Tušek, Sandra Balbino, Tomislava Vukušić Pavičić, Marina Tomašević, Ivana Radojčić Redovniković, Karin Kovačević Ganić

University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia

Contact the author*

Keywords

Grape pomace, Grape seed oil, Pulsed electric fields (PEF), Supercritical CO₂ (SC CO₂)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).