terclim by ICS banner
IVES 9 IVES Conference Series 9 VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Abstract

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated. In addition, opposed to conventional solvent extraction methods, new trends lead to the employment of eco-friendly extraction technologies as supercritical CO₂ (SC CO₂) extraction. The aim of this research was to study impact of low and high intensity pulsed electric fields (PEF) pretreatments prior to SC CO₂ extraction of grape seed oil, from Graševina grape pomace, on the oil yield and chemical composition. Results showed that PEF assisted SC CO₂ extracted more than 95% of pomace lipids and contributed to significantly higher concentrations of both lipophilic (sterols and tocochromanols) and hydrophilic antioxidants (polyphenolic compounds) in grape seed oil. These concentrations were up to 10% higher for total sterols, but even more than 50% higher for total tocochromanols and total individual polyphenols, respectively. PEF pretreated samples showed significantly higher concentrations of stigmasterol, β-sitosterol, Δ5-avenasterol, Δ5,24-stigmastadienol and Δ7-avenasterol. Moreover, significantly higher concentrations of all analyzed tocochromanols were also found in these samples, primarily of β-tocopherol, plastochromanol-8 and α-tocotrienol that showed more than two times higher values. In addition, PEF pretreatments significantly contributed to the extraction of all individual polyphenolic compounds, while more than two times higher concentrations were found for gallic, p-coumaric and ferulic acids. Moreover, PEF assisted SC CO₂ extraction showed favorable effect on the extraction of the most abundant fatty acid, linoleic acid. Finally, the highest concentrations of both lipophilic and hydrophilic compounds were extracted by PEF pretreatment of higher intensity.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Natka Ćurko*, Katarina Lukić, Ana Jurinjak Tušek, Sandra Balbino, Tomislava Vukušić Pavičić, Marina Tomašević, Ivana Radojčić Redovniković, Karin Kovačević Ganić

University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia

Contact the author*

Keywords

Grape pomace, Grape seed oil, Pulsed electric fields (PEF), Supercritical CO₂ (SC CO₂)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.