GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 A few observations on double sigmoid fruit growth

A few observations on double sigmoid fruit growth

Abstract

Context and purpose ‐ Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches. Connors’ description of a three‐stage pattern consisting of two growth stages (Stage I and Stage III) separated by a rest period (Stage II) has become textbook material. The growth of grapes was described similarly by Winkler and Williams (1936), Nitsch et al. (1960), and most subsequent authors. Prior to Connors, grape berry development was described as a two‐stage process, in French periode herbacee and periode maturation, but this description refers to fruit ripening and has little or nothing to do with growth.

Material and Methods ‐ A review of grape literature reveals that the characteristic DSG habit was reported several times prior to Connors’ discovery in peaches. Analyses of berry size, turgor, firmness, and composition during Stage II and into Stage III are interpreted in the context of the growth habit.

Results ‐ It will be argued that one researcher in particular, Carl Neubauer, should be credited with the discovery of DSG and its description as a three‐stage phenomenon in fleshy fruits. It is widely reported that DSG in fleshy fruit is a consequence of within‐fruit partitioning (to endocarp or seed rather than pericarp/flesh). However, DSG is observed in berry dry weight and in seedless berries, which negate the common explanations. Thus, one hundred‐fifty years later, the nature of double‐sigmoid growth is still not understood. It is the resumption of rapid growth that is most curious. Various lines of evidence from our studies suggest that a suite of physiological changes during Stage II lead to the transition from Stage II lag phase to Stage III growth, paradoxically implicating a role of low cell turgor. Turgor declines and berries soften during Stage II. These changes occur in conjunction with increased apoplastic solutes and ABA, followed by increased sugar influx and upregulation of cell wall loosening enzymes. Because growth increases in the face of very low turgor, Stage III growth is hypothesized to result from cell wall loosening or even wall degradation without addition of new wall material.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Mark MATTHEWS

Dept. of Viticulture and Enology, Univ. California-Davis, Davis, CA 95616

Contact the author

Keywords

berry, fruit, growth, water relations, turgor, cell wall, ABA

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Evolution of chemical pattern related to Valpolicella aroma ‘terroir’ during bottle aging

Valpolicella is a famous Italian wine-producing region. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years require wines. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.