GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 A few observations on double sigmoid fruit growth

A few observations on double sigmoid fruit growth

Abstract

Context and purpose ‐ Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches. Connors’ description of a three‐stage pattern consisting of two growth stages (Stage I and Stage III) separated by a rest period (Stage II) has become textbook material. The growth of grapes was described similarly by Winkler and Williams (1936), Nitsch et al. (1960), and most subsequent authors. Prior to Connors, grape berry development was described as a two‐stage process, in French periode herbacee and periode maturation, but this description refers to fruit ripening and has little or nothing to do with growth.

Material and Methods ‐ A review of grape literature reveals that the characteristic DSG habit was reported several times prior to Connors’ discovery in peaches. Analyses of berry size, turgor, firmness, and composition during Stage II and into Stage III are interpreted in the context of the growth habit.

Results ‐ It will be argued that one researcher in particular, Carl Neubauer, should be credited with the discovery of DSG and its description as a three‐stage phenomenon in fleshy fruits. It is widely reported that DSG in fleshy fruit is a consequence of within‐fruit partitioning (to endocarp or seed rather than pericarp/flesh). However, DSG is observed in berry dry weight and in seedless berries, which negate the common explanations. Thus, one hundred‐fifty years later, the nature of double‐sigmoid growth is still not understood. It is the resumption of rapid growth that is most curious. Various lines of evidence from our studies suggest that a suite of physiological changes during Stage II lead to the transition from Stage II lag phase to Stage III growth, paradoxically implicating a role of low cell turgor. Turgor declines and berries soften during Stage II. These changes occur in conjunction with increased apoplastic solutes and ABA, followed by increased sugar influx and upregulation of cell wall loosening enzymes. Because growth increases in the face of very low turgor, Stage III growth is hypothesized to result from cell wall loosening or even wall degradation without addition of new wall material.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Mark MATTHEWS

Dept. of Viticulture and Enology, Univ. California-Davis, Davis, CA 95616

Contact the author

Keywords

berry, fruit, growth, water relations, turgor, cell wall, ABA

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.