GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 A few observations on double sigmoid fruit growth

A few observations on double sigmoid fruit growth

Abstract

Context and purpose ‐ Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches. Connors’ description of a three‐stage pattern consisting of two growth stages (Stage I and Stage III) separated by a rest period (Stage II) has become textbook material. The growth of grapes was described similarly by Winkler and Williams (1936), Nitsch et al. (1960), and most subsequent authors. Prior to Connors, grape berry development was described as a two‐stage process, in French periode herbacee and periode maturation, but this description refers to fruit ripening and has little or nothing to do with growth.

Material and Methods ‐ A review of grape literature reveals that the characteristic DSG habit was reported several times prior to Connors’ discovery in peaches. Analyses of berry size, turgor, firmness, and composition during Stage II and into Stage III are interpreted in the context of the growth habit.

Results ‐ It will be argued that one researcher in particular, Carl Neubauer, should be credited with the discovery of DSG and its description as a three‐stage phenomenon in fleshy fruits. It is widely reported that DSG in fleshy fruit is a consequence of within‐fruit partitioning (to endocarp or seed rather than pericarp/flesh). However, DSG is observed in berry dry weight and in seedless berries, which negate the common explanations. Thus, one hundred‐fifty years later, the nature of double‐sigmoid growth is still not understood. It is the resumption of rapid growth that is most curious. Various lines of evidence from our studies suggest that a suite of physiological changes during Stage II lead to the transition from Stage II lag phase to Stage III growth, paradoxically implicating a role of low cell turgor. Turgor declines and berries soften during Stage II. These changes occur in conjunction with increased apoplastic solutes and ABA, followed by increased sugar influx and upregulation of cell wall loosening enzymes. Because growth increases in the face of very low turgor, Stage III growth is hypothesized to result from cell wall loosening or even wall degradation without addition of new wall material.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Mark MATTHEWS

Dept. of Viticulture and Enology, Univ. California-Davis, Davis, CA 95616

Contact the author

Keywords

berry, fruit, growth, water relations, turgor, cell wall, ABA

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Morphological image analysis for determining bunch grape characteristics: A case study on bunch weight in Cabernet-Sauvignon

Morphological image analysis is a powerful technique used in various fields, including agriculture, to quantitatively assess the physical characteristics of objects. In viticulture, the accurate assessment of grapevine characteristics is essential for optimizing crop management and improving the quality of wine production.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…