GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 A few observations on double sigmoid fruit growth

A few observations on double sigmoid fruit growth

Abstract

Context and purpose ‐ Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches. Connors’ description of a three‐stage pattern consisting of two growth stages (Stage I and Stage III) separated by a rest period (Stage II) has become textbook material. The growth of grapes was described similarly by Winkler and Williams (1936), Nitsch et al. (1960), and most subsequent authors. Prior to Connors, grape berry development was described as a two‐stage process, in French periode herbacee and periode maturation, but this description refers to fruit ripening and has little or nothing to do with growth.

Material and Methods ‐ A review of grape literature reveals that the characteristic DSG habit was reported several times prior to Connors’ discovery in peaches. Analyses of berry size, turgor, firmness, and composition during Stage II and into Stage III are interpreted in the context of the growth habit.

Results ‐ It will be argued that one researcher in particular, Carl Neubauer, should be credited with the discovery of DSG and its description as a three‐stage phenomenon in fleshy fruits. It is widely reported that DSG in fleshy fruit is a consequence of within‐fruit partitioning (to endocarp or seed rather than pericarp/flesh). However, DSG is observed in berry dry weight and in seedless berries, which negate the common explanations. Thus, one hundred‐fifty years later, the nature of double‐sigmoid growth is still not understood. It is the resumption of rapid growth that is most curious. Various lines of evidence from our studies suggest that a suite of physiological changes during Stage II lead to the transition from Stage II lag phase to Stage III growth, paradoxically implicating a role of low cell turgor. Turgor declines and berries soften during Stage II. These changes occur in conjunction with increased apoplastic solutes and ABA, followed by increased sugar influx and upregulation of cell wall loosening enzymes. Because growth increases in the face of very low turgor, Stage III growth is hypothesized to result from cell wall loosening or even wall degradation without addition of new wall material.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Mark MATTHEWS

Dept. of Viticulture and Enology, Univ. California-Davis, Davis, CA 95616

Contact the author

Keywords

berry, fruit, growth, water relations, turgor, cell wall, ABA

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.