terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Abstract

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.
The purpose of this communication is to highlight how rootstock influences Cabernet Sauvignon red wine aromatic expression.
This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks × 5 scions × 3 blocks) focusing on Vitis vinifera cv. Cabernet Sauvignon and on 20 rootstocks [4]. Grape samples were collected and fermented in triplicate at laboratory scale under standardized conditions; wines were stabilized and stored at the end of alcoholic fermentation.
Sensory analyses were performed to evaluate rootstock impact on aromatic expression. Conventional sensory profiles were carried out following the methodology used by Pelonnier-Magimel et al. (2020) [5], divided into three main steps: descriptor generation, specific training on the generated vocabulary and final evaluation. A panel with similar wine knowledge and previous sensory training was selected for this purpose.
During the first step of sensory evaluation, the tasters generated a defined number of descriptors on a wine selection and following this session 11 terms were chosen based on with panel agreement.
A specific session was carried out before the start of the training in order to validate the general consensus for the proposed references (or descriptors). A control sensory profile was organized after several weeks of training to verify the consensus of the panel.
Sensory analysis data did not allow to highlight a difference in Cabernet Sauvignon red wine aromatic expression for this specific vintage, characterized by excessive rainfall and mean temperatures below the seasonal average. In conclusion, the exploration of other sensory approaches would be interesting to complete this work, as well as a complementary study of other vintages characterized by contrasting climatic conditions compared to 2021.

 

1. Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., & Gambetta, G. A. (2016). The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 28, 143-157.
2. Ollat, N., Tandonnet, J. P., Lafontaine, M., & Schultz, H. R. (2001, August). Short and long term effects of three rootstocks on Cabernet Sauvignon vine behaviour and wine quality. In Workshop on Rootstocks Performance in Phylloxera Infested Vineyards 617 (pp. 95-99).
3. Pulko, B., Vršič, S., & Valdhuber, J. (2012). Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech Journal of Food Sciences, 30(5), 467-473.
4. Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. Gref-fAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21th International Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208.
5. Pelonnier-Magimel, E., Windhotz, S., Pomarède, I. M., & Barbe, J. C. (2020). Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. Oeno One, 54(4), 671-685.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Laura Farris1,2, Marine Morel3, Julia Gouot1,2,4, Edouard Pelonnier-Magimel1,2, Elisa Marguerit3, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
4. R&D Department, JAS Hennessy & Co, Cognac, France

Contact the author*

Keywords

rootstock, Cabernet Sauvignon, sensory analysis, aromatic expression

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.