terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Abstract

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.
The purpose of this communication is to highlight how rootstock influences Cabernet Sauvignon red wine aromatic expression.
This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks × 5 scions × 3 blocks) focusing on Vitis vinifera cv. Cabernet Sauvignon and on 20 rootstocks [4]. Grape samples were collected and fermented in triplicate at laboratory scale under standardized conditions; wines were stabilized and stored at the end of alcoholic fermentation.
Sensory analyses were performed to evaluate rootstock impact on aromatic expression. Conventional sensory profiles were carried out following the methodology used by Pelonnier-Magimel et al. (2020) [5], divided into three main steps: descriptor generation, specific training on the generated vocabulary and final evaluation. A panel with similar wine knowledge and previous sensory training was selected for this purpose.
During the first step of sensory evaluation, the tasters generated a defined number of descriptors on a wine selection and following this session 11 terms were chosen based on with panel agreement.
A specific session was carried out before the start of the training in order to validate the general consensus for the proposed references (or descriptors). A control sensory profile was organized after several weeks of training to verify the consensus of the panel.
Sensory analysis data did not allow to highlight a difference in Cabernet Sauvignon red wine aromatic expression for this specific vintage, characterized by excessive rainfall and mean temperatures below the seasonal average. In conclusion, the exploration of other sensory approaches would be interesting to complete this work, as well as a complementary study of other vintages characterized by contrasting climatic conditions compared to 2021.

 

1. Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., & Gambetta, G. A. (2016). The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 28, 143-157.
2. Ollat, N., Tandonnet, J. P., Lafontaine, M., & Schultz, H. R. (2001, August). Short and long term effects of three rootstocks on Cabernet Sauvignon vine behaviour and wine quality. In Workshop on Rootstocks Performance in Phylloxera Infested Vineyards 617 (pp. 95-99).
3. Pulko, B., Vršič, S., & Valdhuber, J. (2012). Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech Journal of Food Sciences, 30(5), 467-473.
4. Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. Gref-fAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21th International Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208.
5. Pelonnier-Magimel, E., Windhotz, S., Pomarède, I. M., & Barbe, J. C. (2020). Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. Oeno One, 54(4), 671-685.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Laura Farris1,2, Marine Morel3, Julia Gouot1,2,4, Edouard Pelonnier-Magimel1,2, Elisa Marguerit3, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
4. R&D Department, JAS Hennessy & Co, Cognac, France

Contact the author*

Keywords

rootstock, Cabernet Sauvignon, sensory analysis, aromatic expression

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.