terclim by ICS banner
IVES 9 IVES Conference Series 9 GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Abstract

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits. Thus, this work intends to characterize the aroma profile of several samples (23) of grape spirits for Port wine production. That characterization was done by using aroma descriptive analysis with a sensory panel and by using olfactometry (GC-O) in order to screen, with a sniffers panel, the most potent odorant compounds across the several volatile compounds of the samples. It was also determined the sensory thresholds of some of the identified compounds in order to determine the odorant activity value of each compound.

The aroma profile results revealed different grape spirits aroma profiles. The PCA applied to the average results (from a sensory panel) of aroma attributes intensities allows the separation of the samples across the two principal components, which explain more than 50% of the variability. The overall quality appears to be linked to the positive side of component 1 more associated with the fruity, floral and sweet odor notes. The samples with low quality are placed in the opposite side of this component, and linked to higher intensity of odour notes such as tails, herbaceous and oily.

The chromatographic analysis (GC-O and GC-MS) of several grape spirit samples pointed out as potent odorants several compounds that belong to different chemical families, namely esters, alcohols, terpenic compounds, acids and ketones. Based on the sensory thresholds, determined by the sensory panel in hydroalcoholic solutions (20% v/v), the odorant activity values were calculated for the different odorant compounds. The obtained results showed, that the compounds, which presented the higher odorant activity values were esters and terpenic group compounds.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ilda Caldeira1,2, Sílvia Lourenço¹, Isabel Furtado³, Ricardo Silva³, Frank S. S. Rogerson³

1. Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, PORTUGAL
2. MED—Mediterranean Institute for Agriculture, Environment and Development Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, PORTUGAL
3. Symington Family Estates, Vinhos S.A. Travessa Barão de Forrester, 86, 4400-034 Vila Nova de Gaia, PORTUGAL

Contact the author*

Keywords

Grape spirits, Port wine, odorant compounds, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.