GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hexose efflux from the peeled grape berry

Hexose efflux from the peeled grape berry

Abstract

Context and purpose of the study ‐ After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases, and imported into the cells as glucose and fructose. Alternatively, sucrose can be imported directly from the apoplast and cleaved into glucose and fructose, either in the cytoplasm or vacuoles. In low‐sucrose cultivars, such as Shiraz, glucose and fructose are the dominant sugars in vacuoles. Transport of sugars across the plasma membrane and tonoplast is a complex process, not fully understood. Some of the elements of the sugar transport mechanism may work in a reverse mode. The purpose of this study was to indirectly observe the nature of the transport mechanism by creating conditions inducing hexose efflux from a peeled berry.

Material and methods ‐ Potted plants of cv. Shirazwere grown in a glass‐house (25/16°C), from the end of anthesis onward. The experimental method was derived from the “berry‐cup” technique: a peeled berry, still attached to the plant, was immersed in a MES buffer (2‐(N‐morpholino)ethanesulfonic acid, pH 5,5)) solution that was collected every 30 minutes over a 3 hour period. The experiment was repeated weekly during the ripening phase. Additionally, during the period of intensive sugar accumulation (one to three weeks after veraison), three treatments were imposed: (i) a comparison of sugar unloading from berries detached or attached to the vine, (ii) the addition of the membrane‐ impermeant sulfhydryl‐specific cytotoxin p‐chloromercuribenzenesulfonic (PCMBS, 1mM) to the buffer solution, (iii) exposing the berry to cold (10°C), room temperature (27°C) or warm (40°C) buffer. Collected samples were analyzed for glucose and fructose concentration.

Results ‐ During five weeks of ripening, the rate of hexose (mg of glucose+fructose per g of berry fresh weight) efflux from the peeled berry into the buffer solution increased.There was no difference in efflux rate between attached or detached berries, however efllux rates were temperature dependent. The non‐penetrating enzyme inhibitor, PCMBS, depressed glucose and fructose efflux at the first sampling date, but not two weeks later. The inhibitory effect of PCMBS on fructose efflux was different from glucose, however for both hexoses the reversible nature of PCMBS was confirmed. During ripening, the glucose to fructose ratio within the collected buffer was significantly lower than in the grape juice, and had the opposite trend. These results lead us to the conclusion that the origin of the collected hexoses was vacuolar, and that the hexose efflux mechanism is differently sensitive to PCMBS at the two stages of ripening. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Predrag BOŽOVIĆ (1,3), Suzy ROGIERS (2,3), Alain DELOIRE (4)

(1) University of Novi Sad,Faculty of Agriculture, Serbia
(2) New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
(3)National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia
(4)University of Montpellier, SupAgro, Department of Biology-Ecology, France

Contact the author

Keywords

Grapevine, Sugar transport, Glucose, Fructose, Efflux, PCMBS

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.