GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Abstract

Context and purpose of the study ‐ Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average, the principal challenge being to gather representative samples. In this frame, the elaboration of harvest quality directly reflects the impact of the GenotypexEnvironment interaction on fruit metabolism. Much energy is then being devoted to identifying the sites that regulate grape metabolism, upon screening more and more genes and metabolites, and developing virtual berry models simulating sugar and water accumulation in the future harvest. Nevertheless, successive physiological stages never coexist in a fruit and one may wonder whether the “average physiological stage” paradigm does not inevitably lead to a dead end. The strict foundations of berry developmental biology are critically revisited here.

Material and methods – Disparate literature data on the intensity and duration of the second growth period were re‐interpreted, validated and clarified, upon non‐destructive analysis of single berry firmness and growth, on different cultivars in the experimental vineyard of Supagro, as well as on microvines grown in greenhouses. Organic acids and sugars were measured by HPLC on thousands individual berries of Syrah, Pinot and Zinfandel.

Results ‐ Previously unsuspected sub‐periods emerged from the developmental patterns of sugar, water and malic acid flows on single berries, metabolic fluxes and kinetic data being noticeably stable among all investigated cultivars. Berries accumulated sugars at nearly constant volume during the first week following softening, indicating intense xylem back‐flow at this stage. This first period of ripening was also characterized by a net malic acid/4 hexoses exchange consistent with the operation of a sucrose/H+ exchanger at the tonoplast membrane, in usual conditions and genotypes. Aerobic fermentation and vacuolar proton pumps were induced later, while vacuolar malic acid was progressively exhausted, without compromising sugar and water accumulation. As a matter of fact, phloem unloading definitively stopped 28 days after softening. It clearly appeared that the individual fruit develops in a far more determined, reproducible and finally intelligible way than has been predicted so far, based on average samples.New phenotyping procedures were consequently designed for genetic studies, improving heritability and QTLs detection.Switching from fruit genomics and physiology to harvest quality requires a real change in scale, from the fruit to the population. The determinant role of berries asynchrony within the population can’t be ignored any longer, but the impact of the GxE interaction on the population structure essentially remains terra incognita. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Rezk SHAHOOD (1), Stefania SAVOI (2), Antoine BIGARD (2), Laurent TORREGROSA (2), Charles ROMIEU (2)

(1) General Commission for Scientific Agricultural Research, Latakia, Syria
(2) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

grape, berry development, development asynchronism, metabolism, ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Evaluation of climate change impacts at the Portuguese Dão terroir over the last decades: observed effects on bioclimatic indices and grapevine phenology

In the last decades the growers of the Portuguese Dão winegrowing region (center of Portugal) are experiencing changes in climate that are influencing either grape phenology berry health and ripening. Aiming to study the relationships between climate indices (CI), seasonal weather and grapevine phenology, in this work long-term climate and phenological data collected at the experimental vineyard of the Portuguese Dão research centre between 1958 and 2019 (61 years) for the red variety Touriga Nacional, was analyzed. The trends over time for the classical temperature-based indices (Growing Season Temperature – GST -, Growing Degree Days – GDD, Huglin Index – HI and Cool Night Index – CI) presented a significantly positive slope while the Dryness Index (DI) showed a negative trend over the last 61 years. Regarding grapevine phenology, an average advance of 4.5 days per decade in the harvest day was observed throughout the last 61 years. Consequently, the weather conditions during the ripening period have changed, showing an increasing trend over time in the average temperature (higher magnitude in the maximum than in the minimum temperature) and a decrease in the accumulated rainfall. A regression analysis showed that ~50% of harvest date variability over years was explained by the temperature-based indices variability. These observed effects of climate change on bioclimatic indices and corresponding anticipation of harvest date can still be considered advantageous for the Dão terroir as it allows to achieve an optimal berry ripening before the common equinox rains and, therefore, avoid the potential negative impacts of the rainfall on berry health and composition.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation