GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Abstract

Context and purpose of the study ‐ Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average, the principal challenge being to gather representative samples. In this frame, the elaboration of harvest quality directly reflects the impact of the GenotypexEnvironment interaction on fruit metabolism. Much energy is then being devoted to identifying the sites that regulate grape metabolism, upon screening more and more genes and metabolites, and developing virtual berry models simulating sugar and water accumulation in the future harvest. Nevertheless, successive physiological stages never coexist in a fruit and one may wonder whether the “average physiological stage” paradigm does not inevitably lead to a dead end. The strict foundations of berry developmental biology are critically revisited here.

Material and methods – Disparate literature data on the intensity and duration of the second growth period were re‐interpreted, validated and clarified, upon non‐destructive analysis of single berry firmness and growth, on different cultivars in the experimental vineyard of Supagro, as well as on microvines grown in greenhouses. Organic acids and sugars were measured by HPLC on thousands individual berries of Syrah, Pinot and Zinfandel.

Results ‐ Previously unsuspected sub‐periods emerged from the developmental patterns of sugar, water and malic acid flows on single berries, metabolic fluxes and kinetic data being noticeably stable among all investigated cultivars. Berries accumulated sugars at nearly constant volume during the first week following softening, indicating intense xylem back‐flow at this stage. This first period of ripening was also characterized by a net malic acid/4 hexoses exchange consistent with the operation of a sucrose/H+ exchanger at the tonoplast membrane, in usual conditions and genotypes. Aerobic fermentation and vacuolar proton pumps were induced later, while vacuolar malic acid was progressively exhausted, without compromising sugar and water accumulation. As a matter of fact, phloem unloading definitively stopped 28 days after softening. It clearly appeared that the individual fruit develops in a far more determined, reproducible and finally intelligible way than has been predicted so far, based on average samples.New phenotyping procedures were consequently designed for genetic studies, improving heritability and QTLs detection.Switching from fruit genomics and physiology to harvest quality requires a real change in scale, from the fruit to the population. The determinant role of berries asynchrony within the population can’t be ignored any longer, but the impact of the GxE interaction on the population structure essentially remains terra incognita. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Rezk SHAHOOD (1), Stefania SAVOI (2), Antoine BIGARD (2), Laurent TORREGROSA (2), Charles ROMIEU (2)

(1) General Commission for Scientific Agricultural Research, Latakia, Syria
(2) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

grape, berry development, development asynchronism, metabolism, ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.