GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Staying hydrated – not easy when it’s hot!

Staying hydrated – not easy when it’s hot!

Abstract

Context and purpose of the study – Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions. However, the responses of grapevines to a combination of these stress factors are incompletely understood, which hampers the implementation of deficit irrigation and heat mitigation strategies. Our team is investigating impacts of water deficit and temperature alone or in combination on physiology, growth, fruit production and composition of different grape cultivars. In addition, we are also testing different deficit irrigation strategies and novel approaches to canopy heat mitigation.

Material and methods ‒ Experiments are conducted with both field‐ and pot‐grown cultivars of own‐ rooted wine grapes in an arid climate. Drydown and rewatering cycles were applied to 18 cultivars in a vineyard, and changes in soil moisture, leaf water potential, and stomatal conductance were monitored during 4 growing seasons. In another experiment, pot‐grown Cabernet Sauvignon and Riesling vines were exposed in environmentally controlled growth chambers to episodes of water stress, heat stress, and combined water and heat stress, followed by recovery periods. Changes in growth, leaf physiology, and fruit composition were compared with non‐stressed control vines. Finally, a novel mist‐type evaporative cooling system was installed in a Cabernet Sauvignon vineyard and is currently being tested for its ability to mitigate heat stress while maintaining fruit quality.

Results ‒All cultivars tested in the vineyard decreased their leaf water potential as the soil dried. Some cultivars behaved in classic anisohydric fashion, while others only decreased their leaf water status once soil moisture had declined below a threshold, and yet others showed highly variable responses. Irrespective of their hydraulic behavior, all cultivars also responded to soil drying by decreasing stomatal conductance. In the growth chambers, water stress dominated the responses of shoot growth and leaf physiology in both cultivars, but heat stress exacerbated the adverse impact of water stress. By contrast, heat stress dominated the responses of fruit composition, reducing titratable acidity and increasing the pH and total soluble solids. The evaporative cooling system effectively controlled canopy temperatures during heat waves with a minimum supply of water and without adverse effects on disease incidence, fruit yield, and composition. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus KELLER (1), Joelle MARTINEZ (1), Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Ben‐Min CHANG (1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

Heat stress, water stress, irrigation, anisohydric, isohydric, gas exchange

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.