GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Staying hydrated – not easy when it’s hot!

Staying hydrated – not easy when it’s hot!

Abstract

Context and purpose of the study – Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions. However, the responses of grapevines to a combination of these stress factors are incompletely understood, which hampers the implementation of deficit irrigation and heat mitigation strategies. Our team is investigating impacts of water deficit and temperature alone or in combination on physiology, growth, fruit production and composition of different grape cultivars. In addition, we are also testing different deficit irrigation strategies and novel approaches to canopy heat mitigation.

Material and methods ‒ Experiments are conducted with both field‐ and pot‐grown cultivars of own‐ rooted wine grapes in an arid climate. Drydown and rewatering cycles were applied to 18 cultivars in a vineyard, and changes in soil moisture, leaf water potential, and stomatal conductance were monitored during 4 growing seasons. In another experiment, pot‐grown Cabernet Sauvignon and Riesling vines were exposed in environmentally controlled growth chambers to episodes of water stress, heat stress, and combined water and heat stress, followed by recovery periods. Changes in growth, leaf physiology, and fruit composition were compared with non‐stressed control vines. Finally, a novel mist‐type evaporative cooling system was installed in a Cabernet Sauvignon vineyard and is currently being tested for its ability to mitigate heat stress while maintaining fruit quality.

Results ‒All cultivars tested in the vineyard decreased their leaf water potential as the soil dried. Some cultivars behaved in classic anisohydric fashion, while others only decreased their leaf water status once soil moisture had declined below a threshold, and yet others showed highly variable responses. Irrespective of their hydraulic behavior, all cultivars also responded to soil drying by decreasing stomatal conductance. In the growth chambers, water stress dominated the responses of shoot growth and leaf physiology in both cultivars, but heat stress exacerbated the adverse impact of water stress. By contrast, heat stress dominated the responses of fruit composition, reducing titratable acidity and increasing the pH and total soluble solids. The evaporative cooling system effectively controlled canopy temperatures during heat waves with a minimum supply of water and without adverse effects on disease incidence, fruit yield, and composition. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus KELLER (1), Joelle MARTINEZ (1), Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Ben‐Min CHANG (1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

Heat stress, water stress, irrigation, anisohydric, isohydric, gas exchange

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.