GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Staying hydrated – not easy when it’s hot!

Staying hydrated – not easy when it’s hot!

Abstract

Context and purpose of the study – Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions. However, the responses of grapevines to a combination of these stress factors are incompletely understood, which hampers the implementation of deficit irrigation and heat mitigation strategies. Our team is investigating impacts of water deficit and temperature alone or in combination on physiology, growth, fruit production and composition of different grape cultivars. In addition, we are also testing different deficit irrigation strategies and novel approaches to canopy heat mitigation.

Material and methods ‒ Experiments are conducted with both field‐ and pot‐grown cultivars of own‐ rooted wine grapes in an arid climate. Drydown and rewatering cycles were applied to 18 cultivars in a vineyard, and changes in soil moisture, leaf water potential, and stomatal conductance were monitored during 4 growing seasons. In another experiment, pot‐grown Cabernet Sauvignon and Riesling vines were exposed in environmentally controlled growth chambers to episodes of water stress, heat stress, and combined water and heat stress, followed by recovery periods. Changes in growth, leaf physiology, and fruit composition were compared with non‐stressed control vines. Finally, a novel mist‐type evaporative cooling system was installed in a Cabernet Sauvignon vineyard and is currently being tested for its ability to mitigate heat stress while maintaining fruit quality.

Results ‒All cultivars tested in the vineyard decreased their leaf water potential as the soil dried. Some cultivars behaved in classic anisohydric fashion, while others only decreased their leaf water status once soil moisture had declined below a threshold, and yet others showed highly variable responses. Irrespective of their hydraulic behavior, all cultivars also responded to soil drying by decreasing stomatal conductance. In the growth chambers, water stress dominated the responses of shoot growth and leaf physiology in both cultivars, but heat stress exacerbated the adverse impact of water stress. By contrast, heat stress dominated the responses of fruit composition, reducing titratable acidity and increasing the pH and total soluble solids. The evaporative cooling system effectively controlled canopy temperatures during heat waves with a minimum supply of water and without adverse effects on disease incidence, fruit yield, and composition. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus KELLER (1), Joelle MARTINEZ (1), Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Ben‐Min CHANG (1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

Heat stress, water stress, irrigation, anisohydric, isohydric, gas exchange

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

Olfactometric and sensory study of red wines subjected to ultrasound or microwaves during their elaboration

The effect that some extraction techniques, such as ultrasound (Cacciola, Batllò, Ferraretto, Vincenzi, & Celotti, 2013; Povey & McClements, 1988) or microwaves (Carew, Close, & Dambergs, 2015; Carew, Gill, Close, & Dambergs, 2014) produce on the aroma of red wines, when applied to processes of extractive nature, such as pre-fermentative maceration or ageing with oak chips (Spanish oak – Quercus pyrenaica and French oak – Quercus robur) has been studied. The volatile profile was determined by means of gas chromatography coupled with olfactometric and mass spectrometric detection. A sensory analysis was also carried out. No indications were found to show that the pre-fermentative treatment with microwaves or ultrasound modified the sensory profile of the wines whereas the application of such energies during the ageing phase showed some positive trends at sensory level.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].