GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Staying hydrated – not easy when it’s hot!

Staying hydrated – not easy when it’s hot!

Abstract

Context and purpose of the study – Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions. However, the responses of grapevines to a combination of these stress factors are incompletely understood, which hampers the implementation of deficit irrigation and heat mitigation strategies. Our team is investigating impacts of water deficit and temperature alone or in combination on physiology, growth, fruit production and composition of different grape cultivars. In addition, we are also testing different deficit irrigation strategies and novel approaches to canopy heat mitigation.

Material and methods ‒ Experiments are conducted with both field‐ and pot‐grown cultivars of own‐ rooted wine grapes in an arid climate. Drydown and rewatering cycles were applied to 18 cultivars in a vineyard, and changes in soil moisture, leaf water potential, and stomatal conductance were monitored during 4 growing seasons. In another experiment, pot‐grown Cabernet Sauvignon and Riesling vines were exposed in environmentally controlled growth chambers to episodes of water stress, heat stress, and combined water and heat stress, followed by recovery periods. Changes in growth, leaf physiology, and fruit composition were compared with non‐stressed control vines. Finally, a novel mist‐type evaporative cooling system was installed in a Cabernet Sauvignon vineyard and is currently being tested for its ability to mitigate heat stress while maintaining fruit quality.

Results ‒All cultivars tested in the vineyard decreased their leaf water potential as the soil dried. Some cultivars behaved in classic anisohydric fashion, while others only decreased their leaf water status once soil moisture had declined below a threshold, and yet others showed highly variable responses. Irrespective of their hydraulic behavior, all cultivars also responded to soil drying by decreasing stomatal conductance. In the growth chambers, water stress dominated the responses of shoot growth and leaf physiology in both cultivars, but heat stress exacerbated the adverse impact of water stress. By contrast, heat stress dominated the responses of fruit composition, reducing titratable acidity and increasing the pH and total soluble solids. The evaporative cooling system effectively controlled canopy temperatures during heat waves with a minimum supply of water and without adverse effects on disease incidence, fruit yield, and composition. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus KELLER (1), Joelle MARTINEZ (1), Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Ben‐Min CHANG (1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

Heat stress, water stress, irrigation, anisohydric, isohydric, gas exchange

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Effect of vigour and number of clusters on eonological parameters and metabolic profile of Cabernet Sauvignon red wines

Vegetative growth and yield are reported to affect grape and wine quality. They can be controlled through different techniques linked to vine management. The objective of this research was to determine the effect of vine vigour and number of clusters per vine on physicochemical composition and phenolic profile of red wines. The experiment was carried out during two vegetative cycles, with cv. Cabernet Sauvignon grafted onto Paulsen 1103. Three vine vigour were defined, according to shoot weight at previous harvests, being low, medium and high. Five treatments of number of clusters were used for each vigour, with 15, 22, 29, 36, and 45 clusters per vine. Grapes from all treatments were harvested in the same day from Brix and total acidity criteria. Thirty days after bottling, classical analyzes and phenolic compounds were performed. As results, different responses were obtained from each vintage. In 2020, a dry season from veraison to harvest, grapes and wines obtained from low vigour treatment and 45 clusters per vine was the highest in sugar and alcohol content respectively, while grapes and wines from high vigour and 15 clusters presented the lowest sugar and alcohol content. Total anthocyanins were higher in treatment with low vigour and 15 clusters, while the lowest amounts were found in low vigour with 45 clusters, as well as medium and high vigour with 36 clusters per vine. Total tannins were higher in high vigour with 22 clusters and medium vigour with 29 clusters, while were lower in low vigour with 36 clusters. In 2021, a wet season at harvest, responses were different, and great variations were observed between treatments. As conclusions, yield and vine vigour had strong influence on grape and wine quality, promoting different enological potentials on which can be indicated/used for aging strategies of red and even rosé wines.

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

Impact of agrivoltaics on berry ripening: preliminary results for the white cv. Viosinho

Climate change poses significant challenges for viticulture, particularly in Mediterranean regions like Portugal, where extreme heat and drought conditions are becoming more frequent.