GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Staying hydrated – not easy when it’s hot!

Staying hydrated – not easy when it’s hot!

Abstract

Context and purpose of the study – Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions. However, the responses of grapevines to a combination of these stress factors are incompletely understood, which hampers the implementation of deficit irrigation and heat mitigation strategies. Our team is investigating impacts of water deficit and temperature alone or in combination on physiology, growth, fruit production and composition of different grape cultivars. In addition, we are also testing different deficit irrigation strategies and novel approaches to canopy heat mitigation.

Material and methods ‒ Experiments are conducted with both field‐ and pot‐grown cultivars of own‐ rooted wine grapes in an arid climate. Drydown and rewatering cycles were applied to 18 cultivars in a vineyard, and changes in soil moisture, leaf water potential, and stomatal conductance were monitored during 4 growing seasons. In another experiment, pot‐grown Cabernet Sauvignon and Riesling vines were exposed in environmentally controlled growth chambers to episodes of water stress, heat stress, and combined water and heat stress, followed by recovery periods. Changes in growth, leaf physiology, and fruit composition were compared with non‐stressed control vines. Finally, a novel mist‐type evaporative cooling system was installed in a Cabernet Sauvignon vineyard and is currently being tested for its ability to mitigate heat stress while maintaining fruit quality.

Results ‒All cultivars tested in the vineyard decreased their leaf water potential as the soil dried. Some cultivars behaved in classic anisohydric fashion, while others only decreased their leaf water status once soil moisture had declined below a threshold, and yet others showed highly variable responses. Irrespective of their hydraulic behavior, all cultivars also responded to soil drying by decreasing stomatal conductance. In the growth chambers, water stress dominated the responses of shoot growth and leaf physiology in both cultivars, but heat stress exacerbated the adverse impact of water stress. By contrast, heat stress dominated the responses of fruit composition, reducing titratable acidity and increasing the pH and total soluble solids. The evaporative cooling system effectively controlled canopy temperatures during heat waves with a minimum supply of water and without adverse effects on disease incidence, fruit yield, and composition. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus KELLER (1), Joelle MARTINEZ (1), Esther HERNÁNDEZ‐MONTES (1), Yun ZHANG (1,2), Ben‐Min CHANG (1)

(1) Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA 99350, USA
(2) Ste. Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350, USA

Contact the author

Keywords

Heat stress, water stress, irrigation, anisohydric, isohydric, gas exchange

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

Vinos de tea en la isla de la Palma

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco.

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.