terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of satellite-derived vegetation indices for frost damage detection in grapevines

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Abstract

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region. We compared growers’ data to time-series data of each index to assess how quickly satellite-derived VIs could detect changes in vegetation following the frost. We also used VIs to identify which varieties sustained the least amount of damage within an individual vineyard and compared these to grower-reported metrics. All indices showed vegetation decline after the frost, but index performance differed spatially within each vineyard. NDVI and EVI had higher sensitivity to freeze damage detection and time-series analyses showed a general delay in all indices for detecting vegetation changes following the frost. Studies to link other abiotic stress responses to hyperspectral signatures are ongoing with the goal of utilizing space-based imagery for evaluating historical impacts of climate stress and building prediction models for future climate resiliency.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Faith Twinamaani1, Kathleen Kanaley2, Katie Gold2, Jason P Londo1

1 School of Integrative Plant Science, Horticulture section. Cornell University, Cornell Agritech, Geneva, NY, USA
2 School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology section, Cornell University, Cornell Agritech, Geneva, NY, USA

Contact the author*

Keywords

Remote sensing, Frost damage, NDVI, Satellite-based phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

Evidence of successful wine business strategies: customer acquisition, value or retention?

This presentation illustrates a series of successful wine businesses, which have managed to counter the downward trend impacting the global industry. How these businesses have been successful is explained through the planning and execution of strategies that focused on a clear and consistent aim in attracting new consumers. These cases add weight to the ehrenbergian position that for a business to be successful it must target new customers as a priority over alternative options like increasing value or improving customer retention.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.