GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Conversion to mechanical management in vineyards maintains fruit

Conversion to mechanical management in vineyards maintains fruit

Abstract

Context and purpose of the study – Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Material and methods – Since 2016, experiments are carried out in three vineyard regions of France on three grapevine varieties (Merlot, Cabernet Franc and Merlot). The objective is to test if biophysical parameters or vegetation indices could be used to manage fertilization. Around ten plots in each region were studied. Leaves were sampled around the veraison period. Laboratory analysis were made to determine various parameters such as nitrogen, phosphorus and potassium content of leaves. Spot and Sentinel 2 satellite images were taken during the same period with a spatial resolution from 1.5m/pixel to 20m/pixel. A radiative transfer model was used to calculate biophysical parameters, including leaf area index (LAI), green cover fraction (Fcover), and chlorophyll content estimated in leaf (CHL). First, principal component analysis (PCA) were made to better understand the data distribution. Then, links between leaves components and biophysical parameters or vegetation indices were determined using simple and multiple linear regression.

Results – Differences were observed between each region. This could be due to different varieties, soil, climate and grapevine management (row spacing, pruning…). Models were also founded to predict nitrogen content of leaves using the biophysical parameter CHL (2016: R²=0,64, 2017: R²=0,59). These promising results still need to be confirmed with 2018 data. To improve accuracy further work will be carried out with other innovative methods such as machine learning.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Eve LAROCHE PINEL1,2,3*, Sylvie DUTHOIT1, Anne COSTARD1, Jacques ROUSSEAU4, Véronique CHERET2,3, Harold CLENET2,3

1 TerraNIS, 12 Avenue de l’Europe, F-31520 Ramonville Saint-Agne, France
2 Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France
3 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex 4Institut Coopératif du vin, La Jasse de Maurin, F-34970 Montpellier, France

Contact the author

Keywords

satellite remote sensing, fertilization, intra and inter-plot variability, biophysical parameters

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Winemaking options for the improvement of the attributes of the wines from grapes with different oenological potential and sanitary status

The aim of this work was to study winemaking alternatives that will optimize the quality of the Tannat wines, taking advantage of the grape’s oenological potential.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

The characteristics of strong territorial brands: the case of Champagne

While most brands belong to individual enterprises, some brands belong to groups of enterprises based in a single territory. This conceptual paper examines the characteristics