GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Conversion to mechanical management in vineyards maintains fruit

Conversion to mechanical management in vineyards maintains fruit

Abstract

Context and purpose of the study – Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Material and methods – Since 2016, experiments are carried out in three vineyard regions of France on three grapevine varieties (Merlot, Cabernet Franc and Merlot). The objective is to test if biophysical parameters or vegetation indices could be used to manage fertilization. Around ten plots in each region were studied. Leaves were sampled around the veraison period. Laboratory analysis were made to determine various parameters such as nitrogen, phosphorus and potassium content of leaves. Spot and Sentinel 2 satellite images were taken during the same period with a spatial resolution from 1.5m/pixel to 20m/pixel. A radiative transfer model was used to calculate biophysical parameters, including leaf area index (LAI), green cover fraction (Fcover), and chlorophyll content estimated in leaf (CHL). First, principal component analysis (PCA) were made to better understand the data distribution. Then, links between leaves components and biophysical parameters or vegetation indices were determined using simple and multiple linear regression.

Results – Differences were observed between each region. This could be due to different varieties, soil, climate and grapevine management (row spacing, pruning…). Models were also founded to predict nitrogen content of leaves using the biophysical parameter CHL (2016: R²=0,64, 2017: R²=0,59). These promising results still need to be confirmed with 2018 data. To improve accuracy further work will be carried out with other innovative methods such as machine learning.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Eve LAROCHE PINEL1,2,3*, Sylvie DUTHOIT1, Anne COSTARD1, Jacques ROUSSEAU4, Véronique CHERET2,3, Harold CLENET2,3

1 TerraNIS, 12 Avenue de l’Europe, F-31520 Ramonville Saint-Agne, France
2 Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France
3 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex 4Institut Coopératif du vin, La Jasse de Maurin, F-34970 Montpellier, France

Contact the author

Keywords

satellite remote sensing, fertilization, intra and inter-plot variability, biophysical parameters

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

Valorisation agroviticole de l’effet terroir par l’enherbement des sols

The studies developed by INRA and UV, in Angers, concern wine-growing areas and their optimized management, both from an agro-viticultural and oenological point of view. Previous work (Morlat, 1989) made it possible to give a scientific dimension to the concept of viticultural terroir and demonstrated the considerable influence of this production factor on the quality and typicity of wines (Asselin et al, 1992 ) . A methodology for the integrated characterization of terroirs, based on the “Basic Terroir Natural Unit” (considered as the smallest spatial unit of territory usable in practice, and in which the response of the vine is homogeneous), has been development (Riou et al , 1995).