GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Conversion to mechanical management in vineyards maintains fruit

Conversion to mechanical management in vineyards maintains fruit

Abstract

Context and purpose of the study – Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Material and methods – Since 2016, experiments are carried out in three vineyard regions of France on three grapevine varieties (Merlot, Cabernet Franc and Merlot). The objective is to test if biophysical parameters or vegetation indices could be used to manage fertilization. Around ten plots in each region were studied. Leaves were sampled around the veraison period. Laboratory analysis were made to determine various parameters such as nitrogen, phosphorus and potassium content of leaves. Spot and Sentinel 2 satellite images were taken during the same period with a spatial resolution from 1.5m/pixel to 20m/pixel. A radiative transfer model was used to calculate biophysical parameters, including leaf area index (LAI), green cover fraction (Fcover), and chlorophyll content estimated in leaf (CHL). First, principal component analysis (PCA) were made to better understand the data distribution. Then, links between leaves components and biophysical parameters or vegetation indices were determined using simple and multiple linear regression.

Results – Differences were observed between each region. This could be due to different varieties, soil, climate and grapevine management (row spacing, pruning…). Models were also founded to predict nitrogen content of leaves using the biophysical parameter CHL (2016: R²=0,64, 2017: R²=0,59). These promising results still need to be confirmed with 2018 data. To improve accuracy further work will be carried out with other innovative methods such as machine learning.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Eve LAROCHE PINEL1,2,3*, Sylvie DUTHOIT1, Anne COSTARD1, Jacques ROUSSEAU4, Véronique CHERET2,3, Harold CLENET2,3

1 TerraNIS, 12 Avenue de l’Europe, F-31520 Ramonville Saint-Agne, France
2 Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France
3 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex 4Institut Coopératif du vin, La Jasse de Maurin, F-34970 Montpellier, France

Contact the author

Keywords

satellite remote sensing, fertilization, intra and inter-plot variability, biophysical parameters

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

Dissecting the dual role of light regarding the plasticity of grape physiology and gene regulation through daylength simulation in a semi-arid region

Context and purpose of the study. Daylength is a key climatic factor within the terroir concept. However, the complex interplay of multiple variables in regions with varying daylengths makes it challenging to isolate and investigate this specific factor.