GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Conversion to mechanical management in vineyards maintains fruit

Conversion to mechanical management in vineyards maintains fruit

Abstract

Context and purpose of the study – Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Material and methods – Since 2016, experiments are carried out in three vineyard regions of France on three grapevine varieties (Merlot, Cabernet Franc and Merlot). The objective is to test if biophysical parameters or vegetation indices could be used to manage fertilization. Around ten plots in each region were studied. Leaves were sampled around the veraison period. Laboratory analysis were made to determine various parameters such as nitrogen, phosphorus and potassium content of leaves. Spot and Sentinel 2 satellite images were taken during the same period with a spatial resolution from 1.5m/pixel to 20m/pixel. A radiative transfer model was used to calculate biophysical parameters, including leaf area index (LAI), green cover fraction (Fcover), and chlorophyll content estimated in leaf (CHL). First, principal component analysis (PCA) were made to better understand the data distribution. Then, links between leaves components and biophysical parameters or vegetation indices were determined using simple and multiple linear regression.

Results – Differences were observed between each region. This could be due to different varieties, soil, climate and grapevine management (row spacing, pruning…). Models were also founded to predict nitrogen content of leaves using the biophysical parameter CHL (2016: R²=0,64, 2017: R²=0,59). These promising results still need to be confirmed with 2018 data. To improve accuracy further work will be carried out with other innovative methods such as machine learning.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Eve LAROCHE PINEL1,2,3*, Sylvie DUTHOIT1, Anne COSTARD1, Jacques ROUSSEAU4, Véronique CHERET2,3, Harold CLENET2,3

1 TerraNIS, 12 Avenue de l’Europe, F-31520 Ramonville Saint-Agne, France
2 Ecole d’Ingénieurs de PURPAN, 75 voie du TOEC, F-31076 Toulouse, France
3 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex 4Institut Coopératif du vin, La Jasse de Maurin, F-34970 Montpellier, France

Contact the author

Keywords

satellite remote sensing, fertilization, intra and inter-plot variability, biophysical parameters

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of wood starch content on bench grafting success rate in grapevine

Since the emergence of phylloxera, grafting has been the most used propagation method in viticulture. Despite all the improvement measures implemented in the nurseries, it is frequent that graft success rates vary depending on the nursery process and scion/rootstock combinations. The reasons behind this unsatisfactory behaviour are still unknown and can be diverse, although carbohydrate reserves might be hypothesised to be crucial, since callus, root, and new tissue formation will be built based on them. In order to identify the effect of carbohydrates on grafting success, nine combinations were established based on the starch content in grapevine scionwoods (cv. Tempranillo clone VN69) and rootstocks cuttings (110 Richter clone 237) used for grafting: Low (L), Medium (M), High (H).

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

Assessment of environmental sustainability of wine growing activity in France

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.