GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 “Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Abstract

Context and purpose of the study –Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making. The objectives of the information system “Silex viti-oeno module porte-greffe” alias “Silex porte-greffe” are to collect these data, to share it with the interested users and, by this way, to increase our common knowledge of the plant material used in viticulture.

Material and methods –“Silex porte-greffe” is an information system (https://www6.inra.fr/porte-greffe-vigne/Silex-Porte-greffe) created by UMR EGFV (INRA-ISVV Bordeaux) and UMR MISTEA (INRA Montpellier) that aims at collecting all the results from experiments about grapevine rootstocks. In order to improve the ability to share information, this system is based on the use of ontologies for the definition of the names of the factors, variables, and methods of measurement. AGROVOC is defined as one source of ontologies and includes vocabulary used by the international viticulture community. This platform is a tool for experimenters to record the description of their rootstock experiments, store all the data collected, facilitate their consultation and enable complex requests to get access to the stored information. Indeed, all the data will be easily accessible to their owners, their staff, their project partners or general public.

Results – Enriched by experimental results, “Silex porte-greffe” will contribute to highlight the functionalities of grapevine rootstocks such as rootstock-scion interactions, conferred vigor, phenological cycle, pest control and yield. This web application can also help to choose rootstocks that are the most adapted to environmental stress such as water deficit or iron chlorosis. “Silex porte-greffe” is a practical tool to carry out meta-analyses of data about rootstock responses.

Conclusion –The information collected in “Silex porte-greffe” guarantees a deeper knowledge of the plant material. This platform presents a real interest for experimentations to save the information and to constitute a big database about grapevine rootstocks. So far, this tool is being developed in France with professionals and research and development institutes. It could be further extended to European or international levels.

Acknowledgements: We would like to thank CIVB (Conseil Interprofessionnel du vin de Bordeaux), FranceAgriMer and Plant2Pro for financial support.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Floriane BINET1, Arnaud CHARLEROY2, Nabil GIROLLET1, Elisa MARGUERIT1, Pascal NEVEU2, Jean-Pascal TANDONNET1, Nathalie OLLAT1*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
2 UMR Mistea, INRA, 2 Place Pierre Vialia, F-34060 Montpellier, France

Contact the author

Keywords

Rootstock, vine, database, data management platform, web application

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.