GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 “Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Abstract

Context and purpose of the study –Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making. The objectives of the information system “Silex viti-oeno module porte-greffe” alias “Silex porte-greffe” are to collect these data, to share it with the interested users and, by this way, to increase our common knowledge of the plant material used in viticulture.

Material and methods –“Silex porte-greffe” is an information system (https://www6.inra.fr/porte-greffe-vigne/Silex-Porte-greffe) created by UMR EGFV (INRA-ISVV Bordeaux) and UMR MISTEA (INRA Montpellier) that aims at collecting all the results from experiments about grapevine rootstocks. In order to improve the ability to share information, this system is based on the use of ontologies for the definition of the names of the factors, variables, and methods of measurement. AGROVOC is defined as one source of ontologies and includes vocabulary used by the international viticulture community. This platform is a tool for experimenters to record the description of their rootstock experiments, store all the data collected, facilitate their consultation and enable complex requests to get access to the stored information. Indeed, all the data will be easily accessible to their owners, their staff, their project partners or general public.

Results – Enriched by experimental results, “Silex porte-greffe” will contribute to highlight the functionalities of grapevine rootstocks such as rootstock-scion interactions, conferred vigor, phenological cycle, pest control and yield. This web application can also help to choose rootstocks that are the most adapted to environmental stress such as water deficit or iron chlorosis. “Silex porte-greffe” is a practical tool to carry out meta-analyses of data about rootstock responses.

Conclusion –The information collected in “Silex porte-greffe” guarantees a deeper knowledge of the plant material. This platform presents a real interest for experimentations to save the information and to constitute a big database about grapevine rootstocks. So far, this tool is being developed in France with professionals and research and development institutes. It could be further extended to European or international levels.

Acknowledgements: We would like to thank CIVB (Conseil Interprofessionnel du vin de Bordeaux), FranceAgriMer and Plant2Pro for financial support.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Floriane BINET1, Arnaud CHARLEROY2, Nabil GIROLLET1, Elisa MARGUERIT1, Pascal NEVEU2, Jean-Pascal TANDONNET1, Nathalie OLLAT1*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
2 UMR Mistea, INRA, 2 Place Pierre Vialia, F-34060 Montpellier, France

Contact the author

Keywords

Rootstock, vine, database, data management platform, web application

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

A climatic characterisation of the sub-Appellations in the Niagara Peninsula wine region

This study used climatic and topographic data to characterize the sub-appellations that have been recently delineated in the Niagara Peninsula viticulture area in order to assess their potential for ripening early to late season Vitis vinifera varieties. No major differences were found in the ripening-period mean temperatures, but major differences in the diurnal temperature ranges were observed.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.