GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 “Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Abstract

Context and purpose of the study –Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making. The objectives of the information system “Silex viti-oeno module porte-greffe” alias “Silex porte-greffe” are to collect these data, to share it with the interested users and, by this way, to increase our common knowledge of the plant material used in viticulture.

Material and methods –“Silex porte-greffe” is an information system (https://www6.inra.fr/porte-greffe-vigne/Silex-Porte-greffe) created by UMR EGFV (INRA-ISVV Bordeaux) and UMR MISTEA (INRA Montpellier) that aims at collecting all the results from experiments about grapevine rootstocks. In order to improve the ability to share information, this system is based on the use of ontologies for the definition of the names of the factors, variables, and methods of measurement. AGROVOC is defined as one source of ontologies and includes vocabulary used by the international viticulture community. This platform is a tool for experimenters to record the description of their rootstock experiments, store all the data collected, facilitate their consultation and enable complex requests to get access to the stored information. Indeed, all the data will be easily accessible to their owners, their staff, their project partners or general public.

Results – Enriched by experimental results, “Silex porte-greffe” will contribute to highlight the functionalities of grapevine rootstocks such as rootstock-scion interactions, conferred vigor, phenological cycle, pest control and yield. This web application can also help to choose rootstocks that are the most adapted to environmental stress such as water deficit or iron chlorosis. “Silex porte-greffe” is a practical tool to carry out meta-analyses of data about rootstock responses.

Conclusion –The information collected in “Silex porte-greffe” guarantees a deeper knowledge of the plant material. This platform presents a real interest for experimentations to save the information and to constitute a big database about grapevine rootstocks. So far, this tool is being developed in France with professionals and research and development institutes. It could be further extended to European or international levels.

Acknowledgements: We would like to thank CIVB (Conseil Interprofessionnel du vin de Bordeaux), FranceAgriMer and Plant2Pro for financial support.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Floriane BINET1, Arnaud CHARLEROY2, Nabil GIROLLET1, Elisa MARGUERIT1, Pascal NEVEU2, Jean-Pascal TANDONNET1, Nathalie OLLAT1*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
2 UMR Mistea, INRA, 2 Place Pierre Vialia, F-34060 Montpellier, France

Contact the author

Keywords

Rootstock, vine, database, data management platform, web application

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.