GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 “Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Abstract

Context and purpose of the study –Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making. The objectives of the information system “Silex viti-oeno module porte-greffe” alias “Silex porte-greffe” are to collect these data, to share it with the interested users and, by this way, to increase our common knowledge of the plant material used in viticulture.

Material and methods –“Silex porte-greffe” is an information system (https://www6.inra.fr/porte-greffe-vigne/Silex-Porte-greffe) created by UMR EGFV (INRA-ISVV Bordeaux) and UMR MISTEA (INRA Montpellier) that aims at collecting all the results from experiments about grapevine rootstocks. In order to improve the ability to share information, this system is based on the use of ontologies for the definition of the names of the factors, variables, and methods of measurement. AGROVOC is defined as one source of ontologies and includes vocabulary used by the international viticulture community. This platform is a tool for experimenters to record the description of their rootstock experiments, store all the data collected, facilitate their consultation and enable complex requests to get access to the stored information. Indeed, all the data will be easily accessible to their owners, their staff, their project partners or general public.

Results – Enriched by experimental results, “Silex porte-greffe” will contribute to highlight the functionalities of grapevine rootstocks such as rootstock-scion interactions, conferred vigor, phenological cycle, pest control and yield. This web application can also help to choose rootstocks that are the most adapted to environmental stress such as water deficit or iron chlorosis. “Silex porte-greffe” is a practical tool to carry out meta-analyses of data about rootstock responses.

Conclusion –The information collected in “Silex porte-greffe” guarantees a deeper knowledge of the plant material. This platform presents a real interest for experimentations to save the information and to constitute a big database about grapevine rootstocks. So far, this tool is being developed in France with professionals and research and development institutes. It could be further extended to European or international levels.

Acknowledgements: We would like to thank CIVB (Conseil Interprofessionnel du vin de Bordeaux), FranceAgriMer and Plant2Pro for financial support.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Floriane BINET1, Arnaud CHARLEROY2, Nabil GIROLLET1, Elisa MARGUERIT1, Pascal NEVEU2, Jean-Pascal TANDONNET1, Nathalie OLLAT1*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
2 UMR Mistea, INRA, 2 Place Pierre Vialia, F-34060 Montpellier, France

Contact the author

Keywords

Rootstock, vine, database, data management platform, web application

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).