GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Georgian vitis germplasm: conservation, research and usage

Georgian vitis germplasm: conservation, research and usage

Abstract

Context and purpose of the study – Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards. The wild grapevine Vitis silvestris Gmel. is a typical representative of the country’s flora. Importance of this genetic resources is essential for selection and breeding dew to new challenges such as climate change, diseases, environmental concerns and market demands. The present study was organized for multidisciplinary research of identification, collection, characterization and conservation for Georgian grapevine germplasm diversity including autochthonous varieties and wild grapevines with the aim to improve local viticulture and wine making.

Material and methods – The research fields of this study contains ampelography, ampelometry, phenology, cytology, ripening profiles, chemo-taxonomy, DNA fingerprinting and screening for disease. Modern techniques of ampelography based on the OIV descriptors, methodology of the European projects GrapeGen06 and COST FA1003, and molecular genetics (SSR, SNPs) were used to investigate Georgian autochthonous varieties from 5 collections (Georgia, Italy, France) and wild grape from the territory of Georgia. This research is in progress since 2003.

Results – This riches of genetic resources of Georgian grapes and assortment of its wines attracts the international interest because of its diversity. As a result several international (Bioversity International, GrapeGen06, COST FA1003) and national projects have run in the last decade, with Georgia as leader or regional coordinator – the latest being the ongoing “Research Project for the Study of Georgian Grapes and Wine Culture” (National Wine Agency) and the “Wild grapevine of Georgia: Research and Preservation” (Shota Rustaveli National Science Foundation). Being multidisciplinary these projects did grate effort for studding of wide aspects of Georgian grapes and wine, stimulated increasing of knowledge about them and promoting Georgian wines on the World market. As a result of these study large number of the local genetic resources have been certified using ampelography (morphology, phenology, anthocyanins), screening for resistances of downy mildew agent Plasmopara viticola, molecular fingerprinting, wine characteristics, made them available in the Vitis International Variety Catalogue and European Vitis database. The inventory of wild grape was carried out by organization of expeditions, more than 250 wild populations of Vitis silvestris Gmel.have been discovered and a field collection were established in 2014. Several books and articles dedicated to local varieties and wild grapevine were published in the last decade. But in the same time more efforts are needed to continue this work using new DNA technologies as well as ampelography technique in cooperation with other institutions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

David MAGHRADZE1*, Osvaldo FAILLA2, Roberto BACILIERI3, Gabriella DE LORENZIS 2Piero Attilio BIANCO2, Silvia TOFFOLATTI2, Rafael OCETE RUBIO4

1 Georgian Technical University (GTU), Tbilisi, Georgia
2 Department of Agricultural and Environmental Sciences, University of Milan, Italy
3 INRA, Montpellier SupAgro, Génétique de la Vigne, Montpellier, France
4 Laboratorio  de Entomologia Aplicada, Universidad de Sevilla, Spain

Contact the author

Keywords

Georgia, Grapevine, genetic resources, characterization, ampelography, DNA techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

Gevrey-Chambertin : les enjeux d’un territoire vitivinicole locale à l’échelle mondiale

An emblematic name of the burgundy wine region, a few kilometers from dijon, gevrey-chambertin stands out as a small wine town of international renown in the heart of a prestigious red wine vineyard listed as a unesco world heritage site.

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].