GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Georgian vitis germplasm: conservation, research and usage

Georgian vitis germplasm: conservation, research and usage

Abstract

Context and purpose of the study – Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards. The wild grapevine Vitis silvestris Gmel. is a typical representative of the country’s flora. Importance of this genetic resources is essential for selection and breeding dew to new challenges such as climate change, diseases, environmental concerns and market demands. The present study was organized for multidisciplinary research of identification, collection, characterization and conservation for Georgian grapevine germplasm diversity including autochthonous varieties and wild grapevines with the aim to improve local viticulture and wine making.

Material and methods – The research fields of this study contains ampelography, ampelometry, phenology, cytology, ripening profiles, chemo-taxonomy, DNA fingerprinting and screening for disease. Modern techniques of ampelography based on the OIV descriptors, methodology of the European projects GrapeGen06 and COST FA1003, and molecular genetics (SSR, SNPs) were used to investigate Georgian autochthonous varieties from 5 collections (Georgia, Italy, France) and wild grape from the territory of Georgia. This research is in progress since 2003.

Results – This riches of genetic resources of Georgian grapes and assortment of its wines attracts the international interest because of its diversity. As a result several international (Bioversity International, GrapeGen06, COST FA1003) and national projects have run in the last decade, with Georgia as leader or regional coordinator – the latest being the ongoing “Research Project for the Study of Georgian Grapes and Wine Culture” (National Wine Agency) and the “Wild grapevine of Georgia: Research and Preservation” (Shota Rustaveli National Science Foundation). Being multidisciplinary these projects did grate effort for studding of wide aspects of Georgian grapes and wine, stimulated increasing of knowledge about them and promoting Georgian wines on the World market. As a result of these study large number of the local genetic resources have been certified using ampelography (morphology, phenology, anthocyanins), screening for resistances of downy mildew agent Plasmopara viticola, molecular fingerprinting, wine characteristics, made them available in the Vitis International Variety Catalogue and European Vitis database. The inventory of wild grape was carried out by organization of expeditions, more than 250 wild populations of Vitis silvestris Gmel.have been discovered and a field collection were established in 2014. Several books and articles dedicated to local varieties and wild grapevine were published in the last decade. But in the same time more efforts are needed to continue this work using new DNA technologies as well as ampelography technique in cooperation with other institutions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

David MAGHRADZE1*, Osvaldo FAILLA2, Roberto BACILIERI3, Gabriella DE LORENZIS 2Piero Attilio BIANCO2, Silvia TOFFOLATTI2, Rafael OCETE RUBIO4

1 Georgian Technical University (GTU), Tbilisi, Georgia
2 Department of Agricultural and Environmental Sciences, University of Milan, Italy
3 INRA, Montpellier SupAgro, Génétique de la Vigne, Montpellier, France
4 Laboratorio  de Entomologia Aplicada, Universidad de Sevilla, Spain

Contact the author

Keywords

Georgia, Grapevine, genetic resources, characterization, ampelography, DNA techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment.

Evolución de los compuestos fenólicos durante el envero y la maduración en la DO Tarragona

La evolución de los contenidos en las pieles de compuestos fenólicos (fenólicos totales, antocianos totales, antocianos individuales por HPLC, catequinas y proantocianidoles) a lo largo