GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Georgian vitis germplasm: conservation, research and usage

Georgian vitis germplasm: conservation, research and usage

Abstract

Context and purpose of the study – Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards. The wild grapevine Vitis silvestris Gmel. is a typical representative of the country’s flora. Importance of this genetic resources is essential for selection and breeding dew to new challenges such as climate change, diseases, environmental concerns and market demands. The present study was organized for multidisciplinary research of identification, collection, characterization and conservation for Georgian grapevine germplasm diversity including autochthonous varieties and wild grapevines with the aim to improve local viticulture and wine making.

Material and methods – The research fields of this study contains ampelography, ampelometry, phenology, cytology, ripening profiles, chemo-taxonomy, DNA fingerprinting and screening for disease. Modern techniques of ampelography based on the OIV descriptors, methodology of the European projects GrapeGen06 and COST FA1003, and molecular genetics (SSR, SNPs) were used to investigate Georgian autochthonous varieties from 5 collections (Georgia, Italy, France) and wild grape from the territory of Georgia. This research is in progress since 2003.

Results – This riches of genetic resources of Georgian grapes and assortment of its wines attracts the international interest because of its diversity. As a result several international (Bioversity International, GrapeGen06, COST FA1003) and national projects have run in the last decade, with Georgia as leader or regional coordinator – the latest being the ongoing “Research Project for the Study of Georgian Grapes and Wine Culture” (National Wine Agency) and the “Wild grapevine of Georgia: Research and Preservation” (Shota Rustaveli National Science Foundation). Being multidisciplinary these projects did grate effort for studding of wide aspects of Georgian grapes and wine, stimulated increasing of knowledge about them and promoting Georgian wines on the World market. As a result of these study large number of the local genetic resources have been certified using ampelography (morphology, phenology, anthocyanins), screening for resistances of downy mildew agent Plasmopara viticola, molecular fingerprinting, wine characteristics, made them available in the Vitis International Variety Catalogue and European Vitis database. The inventory of wild grape was carried out by organization of expeditions, more than 250 wild populations of Vitis silvestris Gmel.have been discovered and a field collection were established in 2014. Several books and articles dedicated to local varieties and wild grapevine were published in the last decade. But in the same time more efforts are needed to continue this work using new DNA technologies as well as ampelography technique in cooperation with other institutions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

David MAGHRADZE1*, Osvaldo FAILLA2, Roberto BACILIERI3, Gabriella DE LORENZIS 2Piero Attilio BIANCO2, Silvia TOFFOLATTI2, Rafael OCETE RUBIO4

1 Georgian Technical University (GTU), Tbilisi, Georgia
2 Department of Agricultural and Environmental Sciences, University of Milan, Italy
3 INRA, Montpellier SupAgro, Génétique de la Vigne, Montpellier, France
4 Laboratorio  de Entomologia Aplicada, Universidad de Sevilla, Spain

Contact the author

Keywords

Georgia, Grapevine, genetic resources, characterization, ampelography, DNA techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed: