GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Georgian vitis germplasm: conservation, research and usage

Georgian vitis germplasm: conservation, research and usage

Abstract

Context and purpose of the study – Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards. The wild grapevine Vitis silvestris Gmel. is a typical representative of the country’s flora. Importance of this genetic resources is essential for selection and breeding dew to new challenges such as climate change, diseases, environmental concerns and market demands. The present study was organized for multidisciplinary research of identification, collection, characterization and conservation for Georgian grapevine germplasm diversity including autochthonous varieties and wild grapevines with the aim to improve local viticulture and wine making.

Material and methods – The research fields of this study contains ampelography, ampelometry, phenology, cytology, ripening profiles, chemo-taxonomy, DNA fingerprinting and screening for disease. Modern techniques of ampelography based on the OIV descriptors, methodology of the European projects GrapeGen06 and COST FA1003, and molecular genetics (SSR, SNPs) were used to investigate Georgian autochthonous varieties from 5 collections (Georgia, Italy, France) and wild grape from the territory of Georgia. This research is in progress since 2003.

Results – This riches of genetic resources of Georgian grapes and assortment of its wines attracts the international interest because of its diversity. As a result several international (Bioversity International, GrapeGen06, COST FA1003) and national projects have run in the last decade, with Georgia as leader or regional coordinator – the latest being the ongoing “Research Project for the Study of Georgian Grapes and Wine Culture” (National Wine Agency) and the “Wild grapevine of Georgia: Research and Preservation” (Shota Rustaveli National Science Foundation). Being multidisciplinary these projects did grate effort for studding of wide aspects of Georgian grapes and wine, stimulated increasing of knowledge about them and promoting Georgian wines on the World market. As a result of these study large number of the local genetic resources have been certified using ampelography (morphology, phenology, anthocyanins), screening for resistances of downy mildew agent Plasmopara viticola, molecular fingerprinting, wine characteristics, made them available in the Vitis International Variety Catalogue and European Vitis database. The inventory of wild grape was carried out by organization of expeditions, more than 250 wild populations of Vitis silvestris Gmel.have been discovered and a field collection were established in 2014. Several books and articles dedicated to local varieties and wild grapevine were published in the last decade. But in the same time more efforts are needed to continue this work using new DNA technologies as well as ampelography technique in cooperation with other institutions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

David MAGHRADZE1*, Osvaldo FAILLA2, Roberto BACILIERI3, Gabriella DE LORENZIS 2Piero Attilio BIANCO2, Silvia TOFFOLATTI2, Rafael OCETE RUBIO4

1 Georgian Technical University (GTU), Tbilisi, Georgia
2 Department of Agricultural and Environmental Sciences, University of Milan, Italy
3 INRA, Montpellier SupAgro, Génétique de la Vigne, Montpellier, France
4 Laboratorio  de Entomologia Aplicada, Universidad de Sevilla, Spain

Contact the author

Keywords

Georgia, Grapevine, genetic resources, characterization, ampelography, DNA techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.