GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Georgian vitis germplasm: conservation, research and usage

Georgian vitis germplasm: conservation, research and usage

Abstract

Context and purpose of the study – Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards. The wild grapevine Vitis silvestris Gmel. is a typical representative of the country’s flora. Importance of this genetic resources is essential for selection and breeding dew to new challenges such as climate change, diseases, environmental concerns and market demands. The present study was organized for multidisciplinary research of identification, collection, characterization and conservation for Georgian grapevine germplasm diversity including autochthonous varieties and wild grapevines with the aim to improve local viticulture and wine making.

Material and methods – The research fields of this study contains ampelography, ampelometry, phenology, cytology, ripening profiles, chemo-taxonomy, DNA fingerprinting and screening for disease. Modern techniques of ampelography based on the OIV descriptors, methodology of the European projects GrapeGen06 and COST FA1003, and molecular genetics (SSR, SNPs) were used to investigate Georgian autochthonous varieties from 5 collections (Georgia, Italy, France) and wild grape from the territory of Georgia. This research is in progress since 2003.

Results – This riches of genetic resources of Georgian grapes and assortment of its wines attracts the international interest because of its diversity. As a result several international (Bioversity International, GrapeGen06, COST FA1003) and national projects have run in the last decade, with Georgia as leader or regional coordinator – the latest being the ongoing “Research Project for the Study of Georgian Grapes and Wine Culture” (National Wine Agency) and the “Wild grapevine of Georgia: Research and Preservation” (Shota Rustaveli National Science Foundation). Being multidisciplinary these projects did grate effort for studding of wide aspects of Georgian grapes and wine, stimulated increasing of knowledge about them and promoting Georgian wines on the World market. As a result of these study large number of the local genetic resources have been certified using ampelography (morphology, phenology, anthocyanins), screening for resistances of downy mildew agent Plasmopara viticola, molecular fingerprinting, wine characteristics, made them available in the Vitis International Variety Catalogue and European Vitis database. The inventory of wild grape was carried out by organization of expeditions, more than 250 wild populations of Vitis silvestris Gmel.have been discovered and a field collection were established in 2014. Several books and articles dedicated to local varieties and wild grapevine were published in the last decade. But in the same time more efforts are needed to continue this work using new DNA technologies as well as ampelography technique in cooperation with other institutions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

David MAGHRADZE1*, Osvaldo FAILLA2, Roberto BACILIERI3, Gabriella DE LORENZIS 2Piero Attilio BIANCO2, Silvia TOFFOLATTI2, Rafael OCETE RUBIO4

1 Georgian Technical University (GTU), Tbilisi, Georgia
2 Department of Agricultural and Environmental Sciences, University of Milan, Italy
3 INRA, Montpellier SupAgro, Génétique de la Vigne, Montpellier, France
4 Laboratorio  de Entomologia Aplicada, Universidad de Sevilla, Spain

Contact the author

Keywords

Georgia, Grapevine, genetic resources, characterization, ampelography, DNA techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).