GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Abstract

Context and purpose of the study– Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor. For this reason, we started a project with the purpose of identification, characterization and conservation of grapevine germplasm in this area.

Material and methods – Three years study (2016-2018) included ampelographic inventarization of ancient or abandoned vineyards in Ozalj-Vivodina area. A total of 61 samples (vines) were selected for further research and identification. Identification in situ include ampelographic description by standard set of OIV (Organization Internationale de la Vigne et du Vin ) descriptors. Genetic identification was performed using nine microsatellites markers recommended by the European project GRAPEGEN06. Genetic profile of samples was compared by national and several international databases for possible matching between profiles or with other varieties.

Results – Based on microsatellite analysis of the 61 samples, 45 different genotypes were detected which were identified as follows: 18 genotypes did not match with any of the varieties from available databases; 6 genotypes were identified as traditional or native varieties from NW Croatia (Plavec žuti, Kozjak bijeli, Dišeća Ranina, Moslavac (Furmint), Plemenka (Chasselas rouge), Graševina (Welschriesling); 8 genotypes were identified as rare autochthonous Croatian varieties from other wine regions; 7 genotypes represent common varieties from other European countries (Chardonnay, Pinot Blanc, Blaufraenkisch, Sauvignon Blanc, Rkatsiteli, Pamid, Chauch blanc; 5 samples represent a rare variety identified in other European countries (for example Gaensfuesser blau) and one genotype was identified as Belina starohrvatska (syn. Gouais Blanc). It is interesting that Gouais blanc was represented with six samples from five different locations even though it was not considered to be a traditional cultivar in this area. Ampelographic study shown that dominant genotypes have white coloured berry (33), followed by red (7) and rouge (2). Three genotypes had no clusters available during research. Three genotypes have specific muscat flavour and two have a female type of flower. This research shows that Ozalj-Vivodina as a small winegrowing area has rich grapevine germplasm preserved.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Domagoj STUPIĆ1*, Željko ANDABAKA1, Zvjezdana MARKOVIĆ1, Iva ŠIKUTEN1, Petra ŠTAMBUK2, Darko PREINER1,2, Jasminka KAROGLAN KONTIĆ1,2, Edi MALETIĆ1,2, Nikolina ŠTEDUL3, Maja ŽULJ MIHALJEVIĆ1**

1 Faculty of Agriculture, Svetošimunska cesta 25, 10000, Zagreb, Croatia
2 Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
3 Croatia Agriculture and Forestry advisory service, Haulikova 14, 47000, Karlovac, Croatia

Contact the author*

Keywords

Vitis vinifera, grapevine, varieties, genotype, ampelography, genetic identification, microsatellites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.