GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Abstract

Context and purpose of the study– Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor. For this reason, we started a project with the purpose of identification, characterization and conservation of grapevine germplasm in this area.

Material and methods – Three years study (2016-2018) included ampelographic inventarization of ancient or abandoned vineyards in Ozalj-Vivodina area. A total of 61 samples (vines) were selected for further research and identification. Identification in situ include ampelographic description by standard set of OIV (Organization Internationale de la Vigne et du Vin ) descriptors. Genetic identification was performed using nine microsatellites markers recommended by the European project GRAPEGEN06. Genetic profile of samples was compared by national and several international databases for possible matching between profiles or with other varieties.

Results – Based on microsatellite analysis of the 61 samples, 45 different genotypes were detected which were identified as follows: 18 genotypes did not match with any of the varieties from available databases; 6 genotypes were identified as traditional or native varieties from NW Croatia (Plavec žuti, Kozjak bijeli, Dišeća Ranina, Moslavac (Furmint), Plemenka (Chasselas rouge), Graševina (Welschriesling); 8 genotypes were identified as rare autochthonous Croatian varieties from other wine regions; 7 genotypes represent common varieties from other European countries (Chardonnay, Pinot Blanc, Blaufraenkisch, Sauvignon Blanc, Rkatsiteli, Pamid, Chauch blanc; 5 samples represent a rare variety identified in other European countries (for example Gaensfuesser blau) and one genotype was identified as Belina starohrvatska (syn. Gouais Blanc). It is interesting that Gouais blanc was represented with six samples from five different locations even though it was not considered to be a traditional cultivar in this area. Ampelographic study shown that dominant genotypes have white coloured berry (33), followed by red (7) and rouge (2). Three genotypes had no clusters available during research. Three genotypes have specific muscat flavour and two have a female type of flower. This research shows that Ozalj-Vivodina as a small winegrowing area has rich grapevine germplasm preserved.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Domagoj STUPIĆ1*, Željko ANDABAKA1, Zvjezdana MARKOVIĆ1, Iva ŠIKUTEN1, Petra ŠTAMBUK2, Darko PREINER1,2, Jasminka KAROGLAN KONTIĆ1,2, Edi MALETIĆ1,2, Nikolina ŠTEDUL3, Maja ŽULJ MIHALJEVIĆ1**

1 Faculty of Agriculture, Svetošimunska cesta 25, 10000, Zagreb, Croatia
2 Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
3 Croatia Agriculture and Forestry advisory service, Haulikova 14, 47000, Karlovac, Croatia

Contact the author*

Keywords

Vitis vinifera, grapevine, varieties, genotype, ampelography, genetic identification, microsatellites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Leveraging the grapevine drought response to increase vineyard sustainability

In this video recording of the IVES science meeting 2024, Silvina Dayer (PhD in Agronomy, Les Sanctuaires du Mirazur-Groupe Mauro Colagreco, Menton, France) speaks about grapevine drought response to increase vineyard sustainability. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.