GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Abstract

Context and purpose of the study– Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor. For this reason, we started a project with the purpose of identification, characterization and conservation of grapevine germplasm in this area.

Material and methods – Three years study (2016-2018) included ampelographic inventarization of ancient or abandoned vineyards in Ozalj-Vivodina area. A total of 61 samples (vines) were selected for further research and identification. Identification in situ include ampelographic description by standard set of OIV (Organization Internationale de la Vigne et du Vin ) descriptors. Genetic identification was performed using nine microsatellites markers recommended by the European project GRAPEGEN06. Genetic profile of samples was compared by national and several international databases for possible matching between profiles or with other varieties.

Results – Based on microsatellite analysis of the 61 samples, 45 different genotypes were detected which were identified as follows: 18 genotypes did not match with any of the varieties from available databases; 6 genotypes were identified as traditional or native varieties from NW Croatia (Plavec žuti, Kozjak bijeli, Dišeća Ranina, Moslavac (Furmint), Plemenka (Chasselas rouge), Graševina (Welschriesling); 8 genotypes were identified as rare autochthonous Croatian varieties from other wine regions; 7 genotypes represent common varieties from other European countries (Chardonnay, Pinot Blanc, Blaufraenkisch, Sauvignon Blanc, Rkatsiteli, Pamid, Chauch blanc; 5 samples represent a rare variety identified in other European countries (for example Gaensfuesser blau) and one genotype was identified as Belina starohrvatska (syn. Gouais Blanc). It is interesting that Gouais blanc was represented with six samples from five different locations even though it was not considered to be a traditional cultivar in this area. Ampelographic study shown that dominant genotypes have white coloured berry (33), followed by red (7) and rouge (2). Three genotypes had no clusters available during research. Three genotypes have specific muscat flavour and two have a female type of flower. This research shows that Ozalj-Vivodina as a small winegrowing area has rich grapevine germplasm preserved.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Domagoj STUPIĆ1*, Željko ANDABAKA1, Zvjezdana MARKOVIĆ1, Iva ŠIKUTEN1, Petra ŠTAMBUK2, Darko PREINER1,2, Jasminka KAROGLAN KONTIĆ1,2, Edi MALETIĆ1,2, Nikolina ŠTEDUL3, Maja ŽULJ MIHALJEVIĆ1**

1 Faculty of Agriculture, Svetošimunska cesta 25, 10000, Zagreb, Croatia
2 Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
3 Croatia Agriculture and Forestry advisory service, Haulikova 14, 47000, Karlovac, Croatia

Contact the author*

Keywords

Vitis vinifera, grapevine, varieties, genotype, ampelography, genetic identification, microsatellites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Analyse du rôle du terroir dans la définition d’une appellation d’origine

In France, the definition of appellations of origins is entrusted to the Institut National des Appellations d’Origine. (‘NAO). With the increase in price of appellations of origin vine­yards and considering the interests at stake, Institut National des Appellations d’Origine and the Institut National de Recherche Agronomique (INRA) established a work group in 1993 in order to study the “terroir-wine” relationship as precisely as possible, taking into account the knowledge acquired by researchers of the INRA and the experience in the field of the agents of the INAO.

PyExpress – A pipeline for fast and reliable UAV image processing in vineyards

Increasing drought poses a challenge to viticulture, with complex impacts on grape yield and quality. The use of Unmanned Aerial Vehicles (UAV) in Precision Viticulture offers a valuable tool to detect drought stress, capturing its spatio-temporal variability and thus, supports management strategies.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.