GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Abstract

Context and purpose of the study– Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor. For this reason, we started a project with the purpose of identification, characterization and conservation of grapevine germplasm in this area.

Material and methods – Three years study (2016-2018) included ampelographic inventarization of ancient or abandoned vineyards in Ozalj-Vivodina area. A total of 61 samples (vines) were selected for further research and identification. Identification in situ include ampelographic description by standard set of OIV (Organization Internationale de la Vigne et du Vin ) descriptors. Genetic identification was performed using nine microsatellites markers recommended by the European project GRAPEGEN06. Genetic profile of samples was compared by national and several international databases for possible matching between profiles or with other varieties.

Results – Based on microsatellite analysis of the 61 samples, 45 different genotypes were detected which were identified as follows: 18 genotypes did not match with any of the varieties from available databases; 6 genotypes were identified as traditional or native varieties from NW Croatia (Plavec žuti, Kozjak bijeli, Dišeća Ranina, Moslavac (Furmint), Plemenka (Chasselas rouge), Graševina (Welschriesling); 8 genotypes were identified as rare autochthonous Croatian varieties from other wine regions; 7 genotypes represent common varieties from other European countries (Chardonnay, Pinot Blanc, Blaufraenkisch, Sauvignon Blanc, Rkatsiteli, Pamid, Chauch blanc; 5 samples represent a rare variety identified in other European countries (for example Gaensfuesser blau) and one genotype was identified as Belina starohrvatska (syn. Gouais Blanc). It is interesting that Gouais blanc was represented with six samples from five different locations even though it was not considered to be a traditional cultivar in this area. Ampelographic study shown that dominant genotypes have white coloured berry (33), followed by red (7) and rouge (2). Three genotypes had no clusters available during research. Three genotypes have specific muscat flavour and two have a female type of flower. This research shows that Ozalj-Vivodina as a small winegrowing area has rich grapevine germplasm preserved.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Domagoj STUPIĆ1*, Željko ANDABAKA1, Zvjezdana MARKOVIĆ1, Iva ŠIKUTEN1, Petra ŠTAMBUK2, Darko PREINER1,2, Jasminka KAROGLAN KONTIĆ1,2, Edi MALETIĆ1,2, Nikolina ŠTEDUL3, Maja ŽULJ MIHALJEVIĆ1**

1 Faculty of Agriculture, Svetošimunska cesta 25, 10000, Zagreb, Croatia
2 Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
3 Croatia Agriculture and Forestry advisory service, Haulikova 14, 47000, Karlovac, Croatia

Contact the author*

Keywords

Vitis vinifera, grapevine, varieties, genotype, ampelography, genetic identification, microsatellites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Les effets du terroir ou l’expression des potentiels à valoriser

Research into the effects of the Terroir is of major interest for the wine sector. The study of Terroir-Vine-Grape relations, even if it is complex, is fundamental for all viticulture: indeed, the quality of the grape must be the result of the most reasoned agro-viticultural management of the vine possible, which must first, to respect a production balance. The goal sought by the winegrower is to obtain a wine, the optimized result of the interactions Terroir-Grape variety. This link to the terroir is therefore essential to establish by taking into account on the one hand the behavior of the vine (which is the cause), and on the other hand, its effects on the grapes and finally on the wine.

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.