GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Abstract

Context and purpose of the study – Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Material and methods – Vitis vinifera cv. Cabernet Sauvignon clone 169 was grafted onto 13 rootstock genotypes and planted in 2015 in an experimental plot named GreffAdapt. The rootstocks were: Riparia Gloire de Montpellier, 101-14MGt, 3309C, 420A, SO4, 44-53M, Gravesac, Freedom, Dog Ridge, 41B, Rupestris du Lot, 1103P et 110R. The concentration of the following 13 mineral elements was determined in the petioles at veraison (berry softening, 14/08/2017): Nitrogen, Phosphorus, Potassium, Sulphur, Magnesium, Calcium, Sodium, Bore, Zinc, Manganese, Iron, Cupper and Aluminium. Four petioles were harvested from near the clusters from 2 plants for each block (n = 4 per rootstock genotype) and were dried (in an oven at 60°C until they reached a constant mass). Nitrogen content was determined using a Leco FP-528 instrument (LECO, St. Joseph, MI, USA). Other element contents were determined by digesting the plant sample with nitric acid and hydrochloric acid in a CEM Mars5 microwave digester (CEM, Matthews, NC, USA), elemental concentration was determined by reading the solutions on an ICP-OES MS 730-ES (Varian, Palo Alto, CA, USA). Cane pruning weight was also measured for each vine.

Results – The parentage of rootstocks has a significant effect on petiole mineral composition. Rootstocks with at least one V. riparia parent reduced the concentration of P and increased the concentration of Mg and S in the petiole of Cabernet Sauvignon.

Conclusions – Rootstocks with a V. riparia parent generally confer low scion vigour and we have shown that they also confer low petiole P concentration; this could suggest that P uptake and use is related to rootstock conferred vigour in grapevine. These results will be discussed in the context of previous work we have undertaken to understand the genetic architecture of root growth traits in grapevine. This is the first study to demonstrate a significant link between the genetic origin of a rootstock genotype and its ability to regulation scion P content.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Antoine GAUTIER1, Sarah Jane COOKSON1, Loïc LAGALLE1, Nathalie OLLAT1 and Elisa MARGUERIT*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Rootstocks, mineral element, phosphorus, grapevine, Vitis spp.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Zoning like base instrument for the agronomist’s work in vineyard

Ad una prima analisi l’interesse dimostrato dal settore produttivo nei confronti della zonazione vitivinicola è da ricondursi al fatto che dopo i primi approcci puramente accademici

Grapevine varietal diversity as mitigation tool for climate change: Agronomic and oenologic potential of 14 foreign varieties grown in Languedoc region (France)

Climate change effects in Languedoc include an expected rise in temperatures, increased evapotranspiration as well as more severe and frequent climatic hazards, such as frost, drought periods and heat waves. For winegrowers theses phenomena impact both yield and quality, resulting in more frequent unbalanced wines. Research on identified mitigation tools for vineyard management is necessary to improve resilience of grapevine agrosystems. Varietal assortment is one of them. This study focuses on agronomic and oenologic potential of 14 foreign varieties grown in Languedoc French region. Fourteen grapevine varieties were monitored during 2021 from June until harvest on eight different sites, some of which occurring on more than one site adding up to 21 different modalities: 7 white varieties Alvarinho B, Assyrtiko B (2), Malvasia Istriana B, Parellada B, Verdejo B, Verdelho B, Xarello B, and 7 black varieties Saperavi N (2), Touriga nacional N, Baga N, Aleatico N, Montepulciano N (2), Primitivo N (3), Calabrese N (3). Varietals were compared through the following parameters: phenology was assessed by using the information collected in the Database Network of French Vine Conservatories (INRAE-SupAgro-IFV, 2005-2015). The number of inflorescences for shoots from secondary buds and bourillons and suckers were observed to assess post-bud break frost tolerance potential. Grapevine water status was studied through stem water potential measurement, observation of foliage symptoms of drought, and 𝛿13C on must. Frequencies and intensities of downy mildew, powdery mildew, and black rot attacks were estimated before harvest on leaves and clusters and botrytis at harvest to assess disease susceptibilities. Berry composition was monitored from end of veraison until harvest. Yield and mean bunch weight were also calculated. Varieties were then ranked on a 1-4 scale for each parameter and compared through PCA. Forty two stations of the Mediterranean basin were compared by PCA with the Multicriteria Climatic Classification indicators in order to confront the collected information during 2021 campaign to the hypothesis that plants coming from dry and hot regions are genetically adapted to such climatic conditions.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.