GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Abstract

Context and purpose of the study – Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Material and methods – Vitis vinifera cv. Cabernet Sauvignon clone 169 was grafted onto 13 rootstock genotypes and planted in 2015 in an experimental plot named GreffAdapt. The rootstocks were: Riparia Gloire de Montpellier, 101-14MGt, 3309C, 420A, SO4, 44-53M, Gravesac, Freedom, Dog Ridge, 41B, Rupestris du Lot, 1103P et 110R. The concentration of the following 13 mineral elements was determined in the petioles at veraison (berry softening, 14/08/2017): Nitrogen, Phosphorus, Potassium, Sulphur, Magnesium, Calcium, Sodium, Bore, Zinc, Manganese, Iron, Cupper and Aluminium. Four petioles were harvested from near the clusters from 2 plants for each block (n = 4 per rootstock genotype) and were dried (in an oven at 60°C until they reached a constant mass). Nitrogen content was determined using a Leco FP-528 instrument (LECO, St. Joseph, MI, USA). Other element contents were determined by digesting the plant sample with nitric acid and hydrochloric acid in a CEM Mars5 microwave digester (CEM, Matthews, NC, USA), elemental concentration was determined by reading the solutions on an ICP-OES MS 730-ES (Varian, Palo Alto, CA, USA). Cane pruning weight was also measured for each vine.

Results – The parentage of rootstocks has a significant effect on petiole mineral composition. Rootstocks with at least one V. riparia parent reduced the concentration of P and increased the concentration of Mg and S in the petiole of Cabernet Sauvignon.

Conclusions – Rootstocks with a V. riparia parent generally confer low scion vigour and we have shown that they also confer low petiole P concentration; this could suggest that P uptake and use is related to rootstock conferred vigour in grapevine. These results will be discussed in the context of previous work we have undertaken to understand the genetic architecture of root growth traits in grapevine. This is the first study to demonstrate a significant link between the genetic origin of a rootstock genotype and its ability to regulation scion P content.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Antoine GAUTIER1, Sarah Jane COOKSON1, Loïc LAGALLE1, Nathalie OLLAT1 and Elisa MARGUERIT*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Rootstocks, mineral element, phosphorus, grapevine, Vitis spp.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Valorisation of nutraceutical and health-related properties of wine-grapes of Emilia-Romagna Italian region

In this work, results about the composition in polyphenols and polyamines in important wine-grape cultivars from the Emilia-Romagna region are presented. Spectrophotometric and HPLC analyses suggest that especially coloured berries are particularly rich of antioxidant species (stilbenes and catechins). Potential allergenic capability of biogenic amines was also characterized.