GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Abstract

Context and purpose of the study: Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel. For the last 4 years, our research group have been focusing on the impact of RB on grape and wine composition and wine sensory properties. Our prior work demonstrated that RB decreases sugar accumulation and delayed color development in the berry, resulting in wines with lower ethanol and anthocyanin concentration, thus affecting sensory attributes. The aim of this study was to determine the impact of RB on grape and wine composition and sensory properties when grapes were harvested sequentially.

Material and Methods: Cabernet Sauvignon and Merlot vineyards from two traditional grape growing regions in California, Napa Valley and Paso Robles respectively were selected in the 2016 and 2017 season. Grape berries from infected (RB +) and healthy (RB -) grapevines were collected weekly from veraison to harvest. RB (+) grapevines were harvested sequentially at two-time points: (1) at the same time as healthy vines – but lower Brix, and (2) later when Brix was similar to those of the healthy grapes at harvest. Brix, pH, titratable acidity (TA), sugar loading, phenolic composition by protein precipitation assay and RP-HPLC and volatile composition by HS-SPME-GC-MS were determined on grapes. Wines were made in triplicate from healthy, RB symptomatic*, and second harvest RB symptomatic* grapes and analyzed for % EtOH v/v, volatile acidity, TA, free and bound SO2, phenolic composition by RP-HPLC and protein precipitation, and volatile composition by HS-SPME-GC-MS. Wine sensory properties were determined by descriptive analyses.

Results: Chemical analysis demonstrated that RB impacts berry composition by increasing TA and decreasing Brix, sugar loading, anthocyanins, altering phenolic composition and sensory attributes. Wines made from RB (+) grapes harvested later had higher pH than wines made from healthy and first harvested RB (+) fruit. On the other hand, wines made from second harvest grapes from symptomatic vines showed less impact of the disease, producing wines with chemical, phenolic and volatile profiles as well as sensory properties more similar to wines made from healthy fruit when compared to wines made from first harvest RB (+) fruit.

*Grapevines showing RB disease symptoms

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Raul CAUDURO GIRARDELLO1*, Monica COOPER1, Rhonda SMITH1, Charles BRENNEMAN1, Anji PERRY2, Arran RUMBAUGH1, Hildegarde HEYMANN1 and Anita OBERHOLSTER1

1 Department of Viticulture and Enology, University of California, Davis, CA 95616-8749, USA
2 J. Lohr Vineyards and Wines, 6169 Airport Road, Paso Robles, CA 93446, USA

Contact the author

Keywords

Red Botch disease, grape composition, wine composition, phenolics, sensory

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.