GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Abstract

Context and purpose of the study: Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel. For the last 4 years, our research group have been focusing on the impact of RB on grape and wine composition and wine sensory properties. Our prior work demonstrated that RB decreases sugar accumulation and delayed color development in the berry, resulting in wines with lower ethanol and anthocyanin concentration, thus affecting sensory attributes. The aim of this study was to determine the impact of RB on grape and wine composition and sensory properties when grapes were harvested sequentially.

Material and Methods: Cabernet Sauvignon and Merlot vineyards from two traditional grape growing regions in California, Napa Valley and Paso Robles respectively were selected in the 2016 and 2017 season. Grape berries from infected (RB +) and healthy (RB -) grapevines were collected weekly from veraison to harvest. RB (+) grapevines were harvested sequentially at two-time points: (1) at the same time as healthy vines – but lower Brix, and (2) later when Brix was similar to those of the healthy grapes at harvest. Brix, pH, titratable acidity (TA), sugar loading, phenolic composition by protein precipitation assay and RP-HPLC and volatile composition by HS-SPME-GC-MS were determined on grapes. Wines were made in triplicate from healthy, RB symptomatic*, and second harvest RB symptomatic* grapes and analyzed for % EtOH v/v, volatile acidity, TA, free and bound SO2, phenolic composition by RP-HPLC and protein precipitation, and volatile composition by HS-SPME-GC-MS. Wine sensory properties were determined by descriptive analyses.

Results: Chemical analysis demonstrated that RB impacts berry composition by increasing TA and decreasing Brix, sugar loading, anthocyanins, altering phenolic composition and sensory attributes. Wines made from RB (+) grapes harvested later had higher pH than wines made from healthy and first harvested RB (+) fruit. On the other hand, wines made from second harvest grapes from symptomatic vines showed less impact of the disease, producing wines with chemical, phenolic and volatile profiles as well as sensory properties more similar to wines made from healthy fruit when compared to wines made from first harvest RB (+) fruit.

*Grapevines showing RB disease symptoms

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Raul CAUDURO GIRARDELLO1*, Monica COOPER1, Rhonda SMITH1, Charles BRENNEMAN1, Anji PERRY2, Arran RUMBAUGH1, Hildegarde HEYMANN1 and Anita OBERHOLSTER1

1 Department of Viticulture and Enology, University of California, Davis, CA 95616-8749, USA
2 J. Lohr Vineyards and Wines, 6169 Airport Road, Paso Robles, CA 93446, USA

Contact the author

Keywords

Red Botch disease, grape composition, wine composition, phenolics, sensory

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.

Potentiel des sols viticoles et qualité des vins

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.