GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Abstract

Context and purpose of the study: Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel. For the last 4 years, our research group have been focusing on the impact of RB on grape and wine composition and wine sensory properties. Our prior work demonstrated that RB decreases sugar accumulation and delayed color development in the berry, resulting in wines with lower ethanol and anthocyanin concentration, thus affecting sensory attributes. The aim of this study was to determine the impact of RB on grape and wine composition and sensory properties when grapes were harvested sequentially.

Material and Methods: Cabernet Sauvignon and Merlot vineyards from two traditional grape growing regions in California, Napa Valley and Paso Robles respectively were selected in the 2016 and 2017 season. Grape berries from infected (RB +) and healthy (RB -) grapevines were collected weekly from veraison to harvest. RB (+) grapevines were harvested sequentially at two-time points: (1) at the same time as healthy vines – but lower Brix, and (2) later when Brix was similar to those of the healthy grapes at harvest. Brix, pH, titratable acidity (TA), sugar loading, phenolic composition by protein precipitation assay and RP-HPLC and volatile composition by HS-SPME-GC-MS were determined on grapes. Wines were made in triplicate from healthy, RB symptomatic*, and second harvest RB symptomatic* grapes and analyzed for % EtOH v/v, volatile acidity, TA, free and bound SO2, phenolic composition by RP-HPLC and protein precipitation, and volatile composition by HS-SPME-GC-MS. Wine sensory properties were determined by descriptive analyses.

Results: Chemical analysis demonstrated that RB impacts berry composition by increasing TA and decreasing Brix, sugar loading, anthocyanins, altering phenolic composition and sensory attributes. Wines made from RB (+) grapes harvested later had higher pH than wines made from healthy and first harvested RB (+) fruit. On the other hand, wines made from second harvest grapes from symptomatic vines showed less impact of the disease, producing wines with chemical, phenolic and volatile profiles as well as sensory properties more similar to wines made from healthy fruit when compared to wines made from first harvest RB (+) fruit.

*Grapevines showing RB disease symptoms

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Raul CAUDURO GIRARDELLO1*, Monica COOPER1, Rhonda SMITH1, Charles BRENNEMAN1, Anji PERRY2, Arran RUMBAUGH1, Hildegarde HEYMANN1 and Anita OBERHOLSTER1

1 Department of Viticulture and Enology, University of California, Davis, CA 95616-8749, USA
2 J. Lohr Vineyards and Wines, 6169 Airport Road, Paso Robles, CA 93446, USA

Contact the author

Keywords

Red Botch disease, grape composition, wine composition, phenolics, sensory

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.