GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Abstract

Context and purpose of the study: Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel. For the last 4 years, our research group have been focusing on the impact of RB on grape and wine composition and wine sensory properties. Our prior work demonstrated that RB decreases sugar accumulation and delayed color development in the berry, resulting in wines with lower ethanol and anthocyanin concentration, thus affecting sensory attributes. The aim of this study was to determine the impact of RB on grape and wine composition and sensory properties when grapes were harvested sequentially.

Material and Methods: Cabernet Sauvignon and Merlot vineyards from two traditional grape growing regions in California, Napa Valley and Paso Robles respectively were selected in the 2016 and 2017 season. Grape berries from infected (RB +) and healthy (RB -) grapevines were collected weekly from veraison to harvest. RB (+) grapevines were harvested sequentially at two-time points: (1) at the same time as healthy vines – but lower Brix, and (2) later when Brix was similar to those of the healthy grapes at harvest. Brix, pH, titratable acidity (TA), sugar loading, phenolic composition by protein precipitation assay and RP-HPLC and volatile composition by HS-SPME-GC-MS were determined on grapes. Wines were made in triplicate from healthy, RB symptomatic*, and second harvest RB symptomatic* grapes and analyzed for % EtOH v/v, volatile acidity, TA, free and bound SO2, phenolic composition by RP-HPLC and protein precipitation, and volatile composition by HS-SPME-GC-MS. Wine sensory properties were determined by descriptive analyses.

Results: Chemical analysis demonstrated that RB impacts berry composition by increasing TA and decreasing Brix, sugar loading, anthocyanins, altering phenolic composition and sensory attributes. Wines made from RB (+) grapes harvested later had higher pH than wines made from healthy and first harvested RB (+) fruit. On the other hand, wines made from second harvest grapes from symptomatic vines showed less impact of the disease, producing wines with chemical, phenolic and volatile profiles as well as sensory properties more similar to wines made from healthy fruit when compared to wines made from first harvest RB (+) fruit.

*Grapevines showing RB disease symptoms

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Raul CAUDURO GIRARDELLO1*, Monica COOPER1, Rhonda SMITH1, Charles BRENNEMAN1, Anji PERRY2, Arran RUMBAUGH1, Hildegarde HEYMANN1 and Anita OBERHOLSTER1

1 Department of Viticulture and Enology, University of California, Davis, CA 95616-8749, USA
2 J. Lohr Vineyards and Wines, 6169 Airport Road, Paso Robles, CA 93446, USA

Contact the author

Keywords

Red Botch disease, grape composition, wine composition, phenolics, sensory

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO624-2022).

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.

Leveraging the grapevine drought response to increase vineyard sustainability

In this video recording of the IVES science meeting 2024, Silvina Dayer (PhD in Agronomy, Les Sanctuaires du Mirazur-Groupe Mauro Colagreco, Menton, France) speaks about grapevine drought response to increase vineyard sustainability. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.