GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Abstract

Context and purpose of the study – Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla. Work done concurrently with this research found that M. hapla J2 are at their lowest density in midsummer, increase to a maximum density between October and March, then decline over spring and early summer (East et al., in press). The influence of product timing on its efficacy will be presented.

Materials and methods – Five vine plots in a Vitis vinifera ‘Riesling’ vineyard were soil sampled for M. hapla J2 in spring 2016 to establish baseline nematode densities. Nematicide treatments of fluazaindolizine (Salibro, total acre rate) and fluensulfone (Nimitz, treated acre rate) were applied according to manufacturer recommendations once in spring 2016; each treatment had four replicate plots. In spring 2017, an additional three spring Salibro treatments, calculated from treated acre rather than total acreage were added: full rate, half rate, and half rate applied twice; and a Nimitz treatment (half rate applied in spring and fall). In spring 2018, a second vineyard site planted to ‘Chardonnay’ was added, with Salibro treatments calculated from treated acre: full rate in spring, half rate in spring, full rate in fall, and half rate in spring and fall. Soil was sampled in each plot to measure M. hapla J2 densities in spring and fall from 2016 through 2018. Dormant pruning weights and whole vine yield were measured to assess effect of nematicide treatments on vine growth.

Results – The total acre rate of Salibro had lower densities of M. hapla J2 than the untreated control in fall 2016, 2017, and 2018 at the Riesling vineyard. Unfortunately, this is not a rate that will be legally registered. The half rate applied twice spring treatment was only effective starting fall of 2018, after two years of application. In fall 2018, both full rate in spring and half rate in spring treatments reduced J2 densities at the Chardonnay vineyard. No other Salibro or any of the Nimitz treatments reduced M. hapla J2 densities. Vine parameters were not affected by nematicide treatments. Spring 2019 results will be available at time of presentation, and we are particularly interested in the longer-term effects of fall-applied treatments.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Katherine E. EAST1*, Inga ZASADA2, Michelle M. MOYER1

1 Dept. of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA

Contact the author

Keywords

Root-knot nematode, Vitis vinifera, Meloidogyne hapla

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.