GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Abstract

Context and purpose of the study – Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla. Work done concurrently with this research found that M. hapla J2 are at their lowest density in midsummer, increase to a maximum density between October and March, then decline over spring and early summer (East et al., in press). The influence of product timing on its efficacy will be presented.

Materials and methods – Five vine plots in a Vitis vinifera ‘Riesling’ vineyard were soil sampled for M. hapla J2 in spring 2016 to establish baseline nematode densities. Nematicide treatments of fluazaindolizine (Salibro, total acre rate) and fluensulfone (Nimitz, treated acre rate) were applied according to manufacturer recommendations once in spring 2016; each treatment had four replicate plots. In spring 2017, an additional three spring Salibro treatments, calculated from treated acre rather than total acreage were added: full rate, half rate, and half rate applied twice; and a Nimitz treatment (half rate applied in spring and fall). In spring 2018, a second vineyard site planted to ‘Chardonnay’ was added, with Salibro treatments calculated from treated acre: full rate in spring, half rate in spring, full rate in fall, and half rate in spring and fall. Soil was sampled in each plot to measure M. hapla J2 densities in spring and fall from 2016 through 2018. Dormant pruning weights and whole vine yield were measured to assess effect of nematicide treatments on vine growth.

Results – The total acre rate of Salibro had lower densities of M. hapla J2 than the untreated control in fall 2016, 2017, and 2018 at the Riesling vineyard. Unfortunately, this is not a rate that will be legally registered. The half rate applied twice spring treatment was only effective starting fall of 2018, after two years of application. In fall 2018, both full rate in spring and half rate in spring treatments reduced J2 densities at the Chardonnay vineyard. No other Salibro or any of the Nimitz treatments reduced M. hapla J2 densities. Vine parameters were not affected by nematicide treatments. Spring 2019 results will be available at time of presentation, and we are particularly interested in the longer-term effects of fall-applied treatments.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Katherine E. EAST1*, Inga ZASADA2, Michelle M. MOYER1

1 Dept. of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA

Contact the author

Keywords

Root-knot nematode, Vitis vinifera, Meloidogyne hapla

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.