GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Abstract

Context and purpose of the study – Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla. Work done concurrently with this research found that M. hapla J2 are at their lowest density in midsummer, increase to a maximum density between October and March, then decline over spring and early summer (East et al., in press). The influence of product timing on its efficacy will be presented.

Materials and methods – Five vine plots in a Vitis vinifera ‘Riesling’ vineyard were soil sampled for M. hapla J2 in spring 2016 to establish baseline nematode densities. Nematicide treatments of fluazaindolizine (Salibro, total acre rate) and fluensulfone (Nimitz, treated acre rate) were applied according to manufacturer recommendations once in spring 2016; each treatment had four replicate plots. In spring 2017, an additional three spring Salibro treatments, calculated from treated acre rather than total acreage were added: full rate, half rate, and half rate applied twice; and a Nimitz treatment (half rate applied in spring and fall). In spring 2018, a second vineyard site planted to ‘Chardonnay’ was added, with Salibro treatments calculated from treated acre: full rate in spring, half rate in spring, full rate in fall, and half rate in spring and fall. Soil was sampled in each plot to measure M. hapla J2 densities in spring and fall from 2016 through 2018. Dormant pruning weights and whole vine yield were measured to assess effect of nematicide treatments on vine growth.

Results – The total acre rate of Salibro had lower densities of M. hapla J2 than the untreated control in fall 2016, 2017, and 2018 at the Riesling vineyard. Unfortunately, this is not a rate that will be legally registered. The half rate applied twice spring treatment was only effective starting fall of 2018, after two years of application. In fall 2018, both full rate in spring and half rate in spring treatments reduced J2 densities at the Chardonnay vineyard. No other Salibro or any of the Nimitz treatments reduced M. hapla J2 densities. Vine parameters were not affected by nematicide treatments. Spring 2019 results will be available at time of presentation, and we are particularly interested in the longer-term effects of fall-applied treatments.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Katherine E. EAST1*, Inga ZASADA2, Michelle M. MOYER1

1 Dept. of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA

Contact the author

Keywords

Root-knot nematode, Vitis vinifera, Meloidogyne hapla

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

Exploring the contributions of terroir factors on berry quality of cvs. Cabernet-Sauvignon and Merlot (Vitis vinifera L.) at the Eastern Foothills of the Helan Mountains region of China

Terroir leaves its mark on the accumulation of flavours in grape berries, triggering biochemical re-actions and ultimately shaping wine styles.

Qualité des vins et Terroirs. Incidence du milieu naturel sur la composition aromatique des vins

The northern vineyards produce wines with a high aromatic richness. The wines of Alsace are appreciated for the diversity of their aromas, the typicality of which was for a long time judged mainly according to the grape variety of origin. Alsatian winegrowers have however widely sensed the importance of the environment of the vine on the quality of the wines. Efforts are made to try to harmonize in a reasoned way the interaction between the natural environment and the plant material with a view to developing the character of the grape variety through the fine expression of the terroir and making the quality and typicality even more inimitable. wines produced in Alsace.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.