GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Abstract

Context and purpose of the study ‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change. Visualization methods such as the optical vulnerability technique (Brodribb et al. 2016) has been shown to be a reliable and accessible approach to observe the spread of embolism in dehydrating leaves (Hochberg et al. 2017; Lamarque et al. 2018). In this study we use the optical technique to examine the development of leaf embolism in three grapevine cultivars as a method to characterize their drought‐tolerance strategy.

Material and methods ‐Potted plants of Grenache, Semillon and Syrah were grown outdoors in 2018 under well‐watered conditions. Leaf embolism formation and spread was evaluated in four individuals per genotype by monitoring changes in light transmission through the xylem after the irrigation was cutted‐off. For each plant, a mature leaf was placed on a scanner and imaged every 5 minutes until complete desiccation. Simultaneous measurements of stem water potential (Ystem) were registered using psychrometers properly installed on the main stem. The accuracy of the psychrometers was evaluated by measuring the leaf water potential in adjacent leaves previously bagged with aluminum foil using a Scholander pressure bomb. The stack of images obtained were analyzed using the ImageJ software as described in Lamarque et al. (2018). The percentage of embolism (%emb) was calculated as the cumulative number of embolised pixels normalized to the total number of embolised pixels throughout the dehydration. Finally, the %emb was represented as a function of Ystem and different events were colored using a continuous scale respective to their time of appearance.

Results ‐Embolism formation and spread in the leaves were detected at different times for each cultivar since the beginning of drought. While Grenache showed the first embolism event at around 48 h of desiccation (‐0.48 MPa), Semillon showed its first event after 72 h (‐1.5 MPa). Syrah plants were placed in between the other two genotypes showing the first embolisms at ‐0.68 MPa. The vulnerability curves (%emb vs Ystem) constructed from the data obtained followed a sigmoidal function for all genotypes and showed a great variability between individuals. In spite of this, the time and water potentials at which the main embolisms occurred was significantly different between cultivars where Grenache showed an early cavitation (P50 at ‐1.43 MPa), followed by Syrah (P50 at ‐1.65 MPa) and Semillon (P50 at ‐2.08 Mpa). The optical technique tested in this study revealed genotype differences in the temporal appearance of leaf embolism suggesting a different strategy to tolerate dehydration. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Silvina DAYER (1), Régis BURLETT (2), Laurent LAMARQUE2, Sylvain DELZON2, Gregory GAMBETTA1*

(1) Institut des Sciences de la Vigne et du Vin, Écophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 210 Chemin de Leysotte, F-33140 Villenave-d’Ornon, France
(2) Biodiversité Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université Bordeaux, 33610 Cestas, France

Contact the author

Keywords

 Embolism, drought, xylem cavitation, vessels, grapevine

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of nitrogen supply on colorimetric parameters of Lugana wines

Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).