GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Abstract

Context and purpose of the study ‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change. Visualization methods such as the optical vulnerability technique (Brodribb et al. 2016) has been shown to be a reliable and accessible approach to observe the spread of embolism in dehydrating leaves (Hochberg et al. 2017; Lamarque et al. 2018). In this study we use the optical technique to examine the development of leaf embolism in three grapevine cultivars as a method to characterize their drought‐tolerance strategy.

Material and methods ‐Potted plants of Grenache, Semillon and Syrah were grown outdoors in 2018 under well‐watered conditions. Leaf embolism formation and spread was evaluated in four individuals per genotype by monitoring changes in light transmission through the xylem after the irrigation was cutted‐off. For each plant, a mature leaf was placed on a scanner and imaged every 5 minutes until complete desiccation. Simultaneous measurements of stem water potential (Ystem) were registered using psychrometers properly installed on the main stem. The accuracy of the psychrometers was evaluated by measuring the leaf water potential in adjacent leaves previously bagged with aluminum foil using a Scholander pressure bomb. The stack of images obtained were analyzed using the ImageJ software as described in Lamarque et al. (2018). The percentage of embolism (%emb) was calculated as the cumulative number of embolised pixels normalized to the total number of embolised pixels throughout the dehydration. Finally, the %emb was represented as a function of Ystem and different events were colored using a continuous scale respective to their time of appearance.

Results ‐Embolism formation and spread in the leaves were detected at different times for each cultivar since the beginning of drought. While Grenache showed the first embolism event at around 48 h of desiccation (‐0.48 MPa), Semillon showed its first event after 72 h (‐1.5 MPa). Syrah plants were placed in between the other two genotypes showing the first embolisms at ‐0.68 MPa. The vulnerability curves (%emb vs Ystem) constructed from the data obtained followed a sigmoidal function for all genotypes and showed a great variability between individuals. In spite of this, the time and water potentials at which the main embolisms occurred was significantly different between cultivars where Grenache showed an early cavitation (P50 at ‐1.43 MPa), followed by Syrah (P50 at ‐1.65 MPa) and Semillon (P50 at ‐2.08 Mpa). The optical technique tested in this study revealed genotype differences in the temporal appearance of leaf embolism suggesting a different strategy to tolerate dehydration. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Silvina DAYER (1), Régis BURLETT (2), Laurent LAMARQUE2, Sylvain DELZON2, Gregory GAMBETTA1*

(1) Institut des Sciences de la Vigne et du Vin, Écophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 210 Chemin de Leysotte, F-33140 Villenave-d’Ornon, France
(2) Biodiversité Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université Bordeaux, 33610 Cestas, France

Contact the author

Keywords

 Embolism, drought, xylem cavitation, vessels, grapevine

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.