GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Abstract

Context and purpose of the study ‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change. Visualization methods such as the optical vulnerability technique (Brodribb et al. 2016) has been shown to be a reliable and accessible approach to observe the spread of embolism in dehydrating leaves (Hochberg et al. 2017; Lamarque et al. 2018). In this study we use the optical technique to examine the development of leaf embolism in three grapevine cultivars as a method to characterize their drought‐tolerance strategy.

Material and methods ‐Potted plants of Grenache, Semillon and Syrah were grown outdoors in 2018 under well‐watered conditions. Leaf embolism formation and spread was evaluated in four individuals per genotype by monitoring changes in light transmission through the xylem after the irrigation was cutted‐off. For each plant, a mature leaf was placed on a scanner and imaged every 5 minutes until complete desiccation. Simultaneous measurements of stem water potential (Ystem) were registered using psychrometers properly installed on the main stem. The accuracy of the psychrometers was evaluated by measuring the leaf water potential in adjacent leaves previously bagged with aluminum foil using a Scholander pressure bomb. The stack of images obtained were analyzed using the ImageJ software as described in Lamarque et al. (2018). The percentage of embolism (%emb) was calculated as the cumulative number of embolised pixels normalized to the total number of embolised pixels throughout the dehydration. Finally, the %emb was represented as a function of Ystem and different events were colored using a continuous scale respective to their time of appearance.

Results ‐Embolism formation and spread in the leaves were detected at different times for each cultivar since the beginning of drought. While Grenache showed the first embolism event at around 48 h of desiccation (‐0.48 MPa), Semillon showed its first event after 72 h (‐1.5 MPa). Syrah plants were placed in between the other two genotypes showing the first embolisms at ‐0.68 MPa. The vulnerability curves (%emb vs Ystem) constructed from the data obtained followed a sigmoidal function for all genotypes and showed a great variability between individuals. In spite of this, the time and water potentials at which the main embolisms occurred was significantly different between cultivars where Grenache showed an early cavitation (P50 at ‐1.43 MPa), followed by Syrah (P50 at ‐1.65 MPa) and Semillon (P50 at ‐2.08 Mpa). The optical technique tested in this study revealed genotype differences in the temporal appearance of leaf embolism suggesting a different strategy to tolerate dehydration. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Silvina DAYER (1), Régis BURLETT (2), Laurent LAMARQUE2, Sylvain DELZON2, Gregory GAMBETTA1*

(1) Institut des Sciences de la Vigne et du Vin, Écophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 210 Chemin de Leysotte, F-33140 Villenave-d’Ornon, France
(2) Biodiversité Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université Bordeaux, 33610 Cestas, France

Contact the author

Keywords

 Embolism, drought, xylem cavitation, vessels, grapevine

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Il ruolo dei comuni nella gestione del territorio e nella tutela dei vitigni autoctoni di qualita’

Questo simposio organizzato dall ‘Associazione nazionale Città del Vino, che mi onoro di presiedere, è per me motivo di particolare soddisfazione perché porta a compimento parte di un percorso iniziato dall’associazione da alcuni anni e che ha un obiettivo apparentemente semplice: sollecitare gli amministratori delle Città del Vino a perseguire con tenacia, tal­volta anche con la necessaria caparbietà, programmi ed interventi che abbiano al centro, sempre, la qualità della vita dei loro territori.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.