GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Abstract

Context and purpose of the study – Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.
Material and methods – The study was conducted in a 6-year-old experimental vineyard located at Caldas city in two consecutive vintages with six different clones (76, 95, 96, 121, 131 and 809 – ENTAV-INRA, France) of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock and trained on a vertical shoot positioned trellis.Grapes were harvested in the maturity stage for sparkling wine production. The volatile compounds were analyzed in the grape berries by HS-SPME/GC-MS.
Results – Considering the clone vineyards, a total of 84 compounds were identified in both vintages, 2017 and 2018. The statistical analysis showed discrimination between harvests (almost 50%) and discrete discrimination (20.2%) among clones in the PCA analysis. Four well established clusters were identified: clone 809 in 2017 and 2018 harvests; the other five clones from 2018; and a fourth region in which the other five clones from 2017 were slightly dispersed. The difference between vintages was mainly due to acids, sulfur-volatiles and furanoid substances. It was confirmed that clone 809 distinguishes from the others clones since it is highly aromatic (monoterpenoid compounds – e.g. linalool, geraniol, nerol), which adds more flowery and fruity notes to the berries, a Muscat character. Among the differences related to the other clones in 2017, the class of compounds that discriminate clones 95 and 96 were aldehyde and monoterpenoid; and ketone and ester compounds, respectively. Although the vintage demonstrated significant influence on the volatile profile of the clones studied (e.g. precipitation levels during the maturation phase), the data indicates that the genotype is a relevant contributor for the differentiation of volatile compounds in Chardonnay clones.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Naíssa PRÉVIDEBERNARDO1,2*, Aline DE OLIVEIRA1,2, Renata Vieira DA MOTA3, Francisco Mickael de Medeiros CÂMARA3, Murillo de Albuquerque REGINA3, Eduardo PURGATTO1,2

1 Food Science and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, bl 14, São Paulo, SP, Brazil
2 Food Research Center, University of São Paulo, São Paulo, Brazil
3 Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Av. Santa Cruz, 500, Caldas, MG, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, grape, aromatic profile, PCA analysis, HS-SPME, GC-MS, flavour, Chardonnay clones

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Grapevine, berry and soil Indicators to manage minimal irrigation strategy in semi-arid conditions: example of Grenache noir (Vitis vinifera L.)

Context and purpose of the study. Climate change in many Mediterranean wine-growing regions is resulting in lower rainfall and higher reference evapotranspiration, generally leading to reduced water availability for vines.