GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Abstract

Context and purpose of the study – Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.
Material and methods – The study was conducted in a 6-year-old experimental vineyard located at Caldas city in two consecutive vintages with six different clones (76, 95, 96, 121, 131 and 809 – ENTAV-INRA, France) of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock and trained on a vertical shoot positioned trellis.Grapes were harvested in the maturity stage for sparkling wine production. The volatile compounds were analyzed in the grape berries by HS-SPME/GC-MS.
Results – Considering the clone vineyards, a total of 84 compounds were identified in both vintages, 2017 and 2018. The statistical analysis showed discrimination between harvests (almost 50%) and discrete discrimination (20.2%) among clones in the PCA analysis. Four well established clusters were identified: clone 809 in 2017 and 2018 harvests; the other five clones from 2018; and a fourth region in which the other five clones from 2017 were slightly dispersed. The difference between vintages was mainly due to acids, sulfur-volatiles and furanoid substances. It was confirmed that clone 809 distinguishes from the others clones since it is highly aromatic (monoterpenoid compounds – e.g. linalool, geraniol, nerol), which adds more flowery and fruity notes to the berries, a Muscat character. Among the differences related to the other clones in 2017, the class of compounds that discriminate clones 95 and 96 were aldehyde and monoterpenoid; and ketone and ester compounds, respectively. Although the vintage demonstrated significant influence on the volatile profile of the clones studied (e.g. precipitation levels during the maturation phase), the data indicates that the genotype is a relevant contributor for the differentiation of volatile compounds in Chardonnay clones.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Naíssa PRÉVIDEBERNARDO1,2*, Aline DE OLIVEIRA1,2, Renata Vieira DA MOTA3, Francisco Mickael de Medeiros CÂMARA3, Murillo de Albuquerque REGINA3, Eduardo PURGATTO1,2

1 Food Science and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, bl 14, São Paulo, SP, Brazil
2 Food Research Center, University of São Paulo, São Paulo, Brazil
3 Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Av. Santa Cruz, 500, Caldas, MG, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, grape, aromatic profile, PCA analysis, HS-SPME, GC-MS, flavour, Chardonnay clones

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

Effects Of Injections Of Large Amounts Of Air During Fermentation

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation.