GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

Abstract

Context and purpose of the study – An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.
Materials and methods – Research winemaking was conducted in 2016, 2017 and 2018. All fermentations were based on 40-kg replicated ferments of Cabernet Franc (CF) and Cabernet Sauvignon (CS). MOG Treatments were (by weight): 0, 0.5%, 1%, 2% and 5% petioles, and 0, 0.25%, 0.5%, 1%, and 2% leaf blades. In 2017 and 2018, different yeast strains and harvest strategies were also included in the CF treatments. Yeast treatments included CSM, EC1118 and FX10. Harvest strategies involved conventional machine harvesting (MH), Braud-New Holland Opti MH, Gregoire 8 MH, MH + optical sorting, and MH with pre-harvest leaf removal. Concentrations of key odor-active compounds were quantified by gas chromatography-mass spectrometry with stir bar sorptive extraction.
Results – Several compounds including cis- and trans-rose oxides, β-ionone, citronellol, linalool, eugenol, methyl and ethyl salicylate were higher in MOG treatments for both CF and CS and their concentrations increased linearly with the accumulative levels of petioles or leaves. Principal components analysis showed petiole and leaf treatments were separated apart from the control sample with the 5% petioles and 2% leaves as the extremes. Petiole and leaf treatments were spread out on different axes, which indicated their large differences in volatile compositions. Interestingly, eugenol and rose oxides and many other compounds followed linear curves with the addition of petioles and leaves in the 2016 vintage, which could be potentially used as a tool to communicate with winemakers on potential floral taint risk based on their sensory thresholds. Preliminary results from 2017 showed that more terpene compounds were found in the standard MH treatment than the hand-harvested control, and the yeast EC1118 produced the least terpenes out of three different yeasts among all leaf and petiole addition treatments in most cases, while yeast strain FX10 produced the highest terpene concentrations. In general, petiole additions contributed more to the floral taint problem than leaf additions. Specifically, petioles contributed terpenes and salicylates (floral notes) to the wines, and leaves contributed norisoprenoids and C6 alcohols (green notes).

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Jiaming WANG1, Emilie AUBIE2, Yi-Bin LAN1, Marnie CROMBLEHOLME1, Andrew REYNOLDS1*

1 Cool Climate Oenology & Viticulture Institute, Brock University, St. Catharines, ON, L2S 3A1, Canada. 2Andrew Peller Winery, 697 S Service Rd, Grimsby, ON L3M 4E8, Canada

Contact the author

Keywords

MOG, floral taint, yeasts, harvest strategies, leaves, petioles, GC-MS, terpenes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Chemistry and analysis of key volatile compounds of wine and their precursors in grape

A relatively small number of the many volatile substances of wine, often present at trace
concentrations, are considered as key volatile compounds. These compounds often exist in grapes
under poorly odoriferous or non volatile forms as aroma precursors.

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.