GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

Abstract

Context and purpose of the study – An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.
Materials and methods – Research winemaking was conducted in 2016, 2017 and 2018. All fermentations were based on 40-kg replicated ferments of Cabernet Franc (CF) and Cabernet Sauvignon (CS). MOG Treatments were (by weight): 0, 0.5%, 1%, 2% and 5% petioles, and 0, 0.25%, 0.5%, 1%, and 2% leaf blades. In 2017 and 2018, different yeast strains and harvest strategies were also included in the CF treatments. Yeast treatments included CSM, EC1118 and FX10. Harvest strategies involved conventional machine harvesting (MH), Braud-New Holland Opti MH, Gregoire 8 MH, MH + optical sorting, and MH with pre-harvest leaf removal. Concentrations of key odor-active compounds were quantified by gas chromatography-mass spectrometry with stir bar sorptive extraction.
Results – Several compounds including cis- and trans-rose oxides, β-ionone, citronellol, linalool, eugenol, methyl and ethyl salicylate were higher in MOG treatments for both CF and CS and their concentrations increased linearly with the accumulative levels of petioles or leaves. Principal components analysis showed petiole and leaf treatments were separated apart from the control sample with the 5% petioles and 2% leaves as the extremes. Petiole and leaf treatments were spread out on different axes, which indicated their large differences in volatile compositions. Interestingly, eugenol and rose oxides and many other compounds followed linear curves with the addition of petioles and leaves in the 2016 vintage, which could be potentially used as a tool to communicate with winemakers on potential floral taint risk based on their sensory thresholds. Preliminary results from 2017 showed that more terpene compounds were found in the standard MH treatment than the hand-harvested control, and the yeast EC1118 produced the least terpenes out of three different yeasts among all leaf and petiole addition treatments in most cases, while yeast strain FX10 produced the highest terpene concentrations. In general, petiole additions contributed more to the floral taint problem than leaf additions. Specifically, petioles contributed terpenes and salicylates (floral notes) to the wines, and leaves contributed norisoprenoids and C6 alcohols (green notes).

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Jiaming WANG1, Emilie AUBIE2, Yi-Bin LAN1, Marnie CROMBLEHOLME1, Andrew REYNOLDS1*

1 Cool Climate Oenology & Viticulture Institute, Brock University, St. Catharines, ON, L2S 3A1, Canada. 2Andrew Peller Winery, 697 S Service Rd, Grimsby, ON L3M 4E8, Canada

Contact the author

Keywords

MOG, floral taint, yeasts, harvest strategies, leaves, petioles, GC-MS, terpenes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

New technologies to characterize spatial variability in viticulture

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality.

Analysis of some environmental factors and cultural practices that affect the production and quality of the Manto Negro, Callet and Prensal Blanc varieties

45 non irrigated vineyards distributed in the DO (Denomination) Pla i Llevant de Mallorca and the DO Binissalem Mallorca were used to investigate the characteristics of production and quality and their relationships certain environmental factors and cultural practices. The grape varieties investigated are autochthonous to the island of Mallorca, Manto Negro and Callet as red and Prensal Blanc as white. All plants were measured for four consecutive years in the main production and quality parameters. Among the environmental factors, the type of soil has been studied, more specifically its water retention capacity, the planting density, the age of the vineyard and the level of viral infection. The presence or absence of virus seems to have no effect on any component studied in the varieties studied. For the white variety Prensal Blanc age is negatively correlated with production and the number of bunches, nevertheless it does not cause any effect on the required quality parameters. However, for the red varieties Callet and Manto Negro, the age of the plantation is the variable that best correlates with the quality parameters, therefore the old vines should be the object of preservation by the viticulturists and winemakers in order to guarantee its contribution to the quality of the wines made with these varieties.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”.