GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

Abstract

Context and purpose of the study – An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.
Materials and methods – Research winemaking was conducted in 2016, 2017 and 2018. All fermentations were based on 40-kg replicated ferments of Cabernet Franc (CF) and Cabernet Sauvignon (CS). MOG Treatments were (by weight): 0, 0.5%, 1%, 2% and 5% petioles, and 0, 0.25%, 0.5%, 1%, and 2% leaf blades. In 2017 and 2018, different yeast strains and harvest strategies were also included in the CF treatments. Yeast treatments included CSM, EC1118 and FX10. Harvest strategies involved conventional machine harvesting (MH), Braud-New Holland Opti MH, Gregoire 8 MH, MH + optical sorting, and MH with pre-harvest leaf removal. Concentrations of key odor-active compounds were quantified by gas chromatography-mass spectrometry with stir bar sorptive extraction.
Results – Several compounds including cis- and trans-rose oxides, β-ionone, citronellol, linalool, eugenol, methyl and ethyl salicylate were higher in MOG treatments for both CF and CS and their concentrations increased linearly with the accumulative levels of petioles or leaves. Principal components analysis showed petiole and leaf treatments were separated apart from the control sample with the 5% petioles and 2% leaves as the extremes. Petiole and leaf treatments were spread out on different axes, which indicated their large differences in volatile compositions. Interestingly, eugenol and rose oxides and many other compounds followed linear curves with the addition of petioles and leaves in the 2016 vintage, which could be potentially used as a tool to communicate with winemakers on potential floral taint risk based on their sensory thresholds. Preliminary results from 2017 showed that more terpene compounds were found in the standard MH treatment than the hand-harvested control, and the yeast EC1118 produced the least terpenes out of three different yeasts among all leaf and petiole addition treatments in most cases, while yeast strain FX10 produced the highest terpene concentrations. In general, petiole additions contributed more to the floral taint problem than leaf additions. Specifically, petioles contributed terpenes and salicylates (floral notes) to the wines, and leaves contributed norisoprenoids and C6 alcohols (green notes).

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Jiaming WANG1, Emilie AUBIE2, Yi-Bin LAN1, Marnie CROMBLEHOLME1, Andrew REYNOLDS1*

1 Cool Climate Oenology & Viticulture Institute, Brock University, St. Catharines, ON, L2S 3A1, Canada. 2Andrew Peller Winery, 697 S Service Rd, Grimsby, ON L3M 4E8, Canada

Contact the author

Keywords

MOG, floral taint, yeasts, harvest strategies, leaves, petioles, GC-MS, terpenes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987.