GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

Abstract

Context and purpose of the study – An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.
Materials and methods – Research winemaking was conducted in 2016, 2017 and 2018. All fermentations were based on 40-kg replicated ferments of Cabernet Franc (CF) and Cabernet Sauvignon (CS). MOG Treatments were (by weight): 0, 0.5%, 1%, 2% and 5% petioles, and 0, 0.25%, 0.5%, 1%, and 2% leaf blades. In 2017 and 2018, different yeast strains and harvest strategies were also included in the CF treatments. Yeast treatments included CSM, EC1118 and FX10. Harvest strategies involved conventional machine harvesting (MH), Braud-New Holland Opti MH, Gregoire 8 MH, MH + optical sorting, and MH with pre-harvest leaf removal. Concentrations of key odor-active compounds were quantified by gas chromatography-mass spectrometry with stir bar sorptive extraction.
Results – Several compounds including cis- and trans-rose oxides, β-ionone, citronellol, linalool, eugenol, methyl and ethyl salicylate were higher in MOG treatments for both CF and CS and their concentrations increased linearly with the accumulative levels of petioles or leaves. Principal components analysis showed petiole and leaf treatments were separated apart from the control sample with the 5% petioles and 2% leaves as the extremes. Petiole and leaf treatments were spread out on different axes, which indicated their large differences in volatile compositions. Interestingly, eugenol and rose oxides and many other compounds followed linear curves with the addition of petioles and leaves in the 2016 vintage, which could be potentially used as a tool to communicate with winemakers on potential floral taint risk based on their sensory thresholds. Preliminary results from 2017 showed that more terpene compounds were found in the standard MH treatment than the hand-harvested control, and the yeast EC1118 produced the least terpenes out of three different yeasts among all leaf and petiole addition treatments in most cases, while yeast strain FX10 produced the highest terpene concentrations. In general, petiole additions contributed more to the floral taint problem than leaf additions. Specifically, petioles contributed terpenes and salicylates (floral notes) to the wines, and leaves contributed norisoprenoids and C6 alcohols (green notes).

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Jiaming WANG1, Emilie AUBIE2, Yi-Bin LAN1, Marnie CROMBLEHOLME1, Andrew REYNOLDS1*

1 Cool Climate Oenology & Viticulture Institute, Brock University, St. Catharines, ON, L2S 3A1, Canada. 2Andrew Peller Winery, 697 S Service Rd, Grimsby, ON L3M 4E8, Canada

Contact the author

Keywords

MOG, floral taint, yeasts, harvest strategies, leaves, petioles, GC-MS, terpenes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Defined the new paradigm, the applied philosophy, the methodology, the algorithm of the “Charter for Universal Holistic MetaEthic Sustainability 4.1C17.18”, research has continued to define and write, an
handbook that should be:”Complete Universal Holistic MetaEthics 4.1C of descriptors” of the “Charter for Sustainability Universal Holistic MetaEthic 4.1C17.18” with basic and applicative indexing. In these activities and research we have involved over 3500 Italian and non-Italian people from the research world to simple but educated, enlightened and enlightening citizens and we have analyzed over 180000
entries concerning the descriptors above, which represent the basic “descriptors”.

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.