GiESCO 2019 banner
IVES 9 IVES Conference Series 9 Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Abstract

Context and purpose of the study ‐ The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients when demand cannot be meet by root uptake. The seasonal changes in these reserves largely depend on the developmental stage and the associated growth requirements of grapevines. These stored reserves are influenced by environmental conditions and vineyard management practices, such as production levels and water availability.The aim was to assess the nutrient dynamics of a major wine grape variety grown in Australia, for determining the key nutrient uptake periods and to understand the mobilisation patterns in a season.

Material and methods ‐ The own‐rooted 10 year old Shiraz vines utilised for the trial were located in the Riverina, being a warm grape growing region. Uniformly sized vines were selected for 11 excavation dates with four replicates from bud‐burst to leaf‐fall. The above ground section of the vines were separated into different parts, with the number of tissues varying with the destructive harvest dates. The below ground section of the vines were obtained in an allocated area (6 m2/vine) and were excavated to a depth of 1 m, the roots were separated into rootstock and three root sizes. The sub‐ o samples of each tissue were freeze dried and the remaining tissues were oven dried at 70 C, for both procedures the dry weight (DW) was recorded. For the nutrient analysis the tissue samples were ground, and nutrients were determined with an N analyser and an ICP‐OES.

Results ‐ The annual organs showed the highest N concentrations in spring, with the leaves 2.5 % and inflorescences with 3 %, but shoot N concentration increased again at the end of the season to 0.7 % DW. Root N concentrations are at least double the other perennial sections, these reserves decline early in the season and were replenished by leaf‐fall. The changes in concentrations for perennial sections are similar for the other macro nutrients, while they differ for Ca and S in the annual tissues. The N content of the perennial structure declined considerably until flowering, with a sharp increase after harvest. The majority of the N uptake occurred four weeks before flowering and four weeks before veraison, more than half the N of the vinewas allocated to the annual organs at harvest. Other macro nutrients show a pattern of decline and replenishment in the roots and wood and most nutrients were taken up predominantly four weeks prior to flowering. The amounts of nutrients allocated to the perennial structure and annual parts varied between the nutrients, the understanding of the nutrient dynamics will led to an optimisation of nutrient status and supply for grapevines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bruno HOLZAPFEL (1 ,2), Jason SMITH (1) and Stewart FIELD (3)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
(2) NSW Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia
(3) Nelson Marlborough Institute of Technology, Blenheim 7240, New Zealand

Contact the author

Keywords

Macro nutrients, annual organs, perennial reserves, concentrations, content, dynamics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Development and application of CRISPR/Cas in grapevine

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years. Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine.