GiESCO 2019 banner
IVES 9 IVES Conference Series 9 Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Abstract

Context and purpose of the study ‐ The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients when demand cannot be meet by root uptake. The seasonal changes in these reserves largely depend on the developmental stage and the associated growth requirements of grapevines. These stored reserves are influenced by environmental conditions and vineyard management practices, such as production levels and water availability.The aim was to assess the nutrient dynamics of a major wine grape variety grown in Australia, for determining the key nutrient uptake periods and to understand the mobilisation patterns in a season.

Material and methods ‐ The own‐rooted 10 year old Shiraz vines utilised for the trial were located in the Riverina, being a warm grape growing region. Uniformly sized vines were selected for 11 excavation dates with four replicates from bud‐burst to leaf‐fall. The above ground section of the vines were separated into different parts, with the number of tissues varying with the destructive harvest dates. The below ground section of the vines were obtained in an allocated area (6 m2/vine) and were excavated to a depth of 1 m, the roots were separated into rootstock and three root sizes. The sub‐ o samples of each tissue were freeze dried and the remaining tissues were oven dried at 70 C, for both procedures the dry weight (DW) was recorded. For the nutrient analysis the tissue samples were ground, and nutrients were determined with an N analyser and an ICP‐OES.

Results ‐ The annual organs showed the highest N concentrations in spring, with the leaves 2.5 % and inflorescences with 3 %, but shoot N concentration increased again at the end of the season to 0.7 % DW. Root N concentrations are at least double the other perennial sections, these reserves decline early in the season and were replenished by leaf‐fall. The changes in concentrations for perennial sections are similar for the other macro nutrients, while they differ for Ca and S in the annual tissues. The N content of the perennial structure declined considerably until flowering, with a sharp increase after harvest. The majority of the N uptake occurred four weeks before flowering and four weeks before veraison, more than half the N of the vinewas allocated to the annual organs at harvest. Other macro nutrients show a pattern of decline and replenishment in the roots and wood and most nutrients were taken up predominantly four weeks prior to flowering. The amounts of nutrients allocated to the perennial structure and annual parts varied between the nutrients, the understanding of the nutrient dynamics will led to an optimisation of nutrient status and supply for grapevines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bruno HOLZAPFEL (1 ,2), Jason SMITH (1) and Stewart FIELD (3)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
(2) NSW Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia
(3) Nelson Marlborough Institute of Technology, Blenheim 7240, New Zealand

Contact the author

Keywords

Macro nutrients, annual organs, perennial reserves, concentrations, content, dynamics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Use of sensors/biosensors for detection of food safety parameters in wine

The implementation of food safety assurance systems in wineries involves ensuring that the wines produced do not pose a risk to consumer health and are therefore free from harmful substances, such as those that may be incorporated during the production process (pesticides, additives, etc.), allergens or mycotoxins.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.