GiESCO 2019 banner
IVES 9 IVES Conference Series 9 Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Abstract

Context and purpose of the study ‐ The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients when demand cannot be meet by root uptake. The seasonal changes in these reserves largely depend on the developmental stage and the associated growth requirements of grapevines. These stored reserves are influenced by environmental conditions and vineyard management practices, such as production levels and water availability.The aim was to assess the nutrient dynamics of a major wine grape variety grown in Australia, for determining the key nutrient uptake periods and to understand the mobilisation patterns in a season.

Material and methods ‐ The own‐rooted 10 year old Shiraz vines utilised for the trial were located in the Riverina, being a warm grape growing region. Uniformly sized vines were selected for 11 excavation dates with four replicates from bud‐burst to leaf‐fall. The above ground section of the vines were separated into different parts, with the number of tissues varying with the destructive harvest dates. The below ground section of the vines were obtained in an allocated area (6 m2/vine) and were excavated to a depth of 1 m, the roots were separated into rootstock and three root sizes. The sub‐ o samples of each tissue were freeze dried and the remaining tissues were oven dried at 70 C, for both procedures the dry weight (DW) was recorded. For the nutrient analysis the tissue samples were ground, and nutrients were determined with an N analyser and an ICP‐OES.

Results ‐ The annual organs showed the highest N concentrations in spring, with the leaves 2.5 % and inflorescences with 3 %, but shoot N concentration increased again at the end of the season to 0.7 % DW. Root N concentrations are at least double the other perennial sections, these reserves decline early in the season and were replenished by leaf‐fall. The changes in concentrations for perennial sections are similar for the other macro nutrients, while they differ for Ca and S in the annual tissues. The N content of the perennial structure declined considerably until flowering, with a sharp increase after harvest. The majority of the N uptake occurred four weeks before flowering and four weeks before veraison, more than half the N of the vinewas allocated to the annual organs at harvest. Other macro nutrients show a pattern of decline and replenishment in the roots and wood and most nutrients were taken up predominantly four weeks prior to flowering. The amounts of nutrients allocated to the perennial structure and annual parts varied between the nutrients, the understanding of the nutrient dynamics will led to an optimisation of nutrient status and supply for grapevines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bruno HOLZAPFEL (1 ,2), Jason SMITH (1) and Stewart FIELD (3)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
(2) NSW Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia
(3) Nelson Marlborough Institute of Technology, Blenheim 7240, New Zealand

Contact the author

Keywords

Macro nutrients, annual organs, perennial reserves, concentrations, content, dynamics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions