GiESCO 2019 banner
IVES 9 IVES Conference Series 9 Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

Abstract

Context and purpose of the study ‐ The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients when demand cannot be meet by root uptake. The seasonal changes in these reserves largely depend on the developmental stage and the associated growth requirements of grapevines. These stored reserves are influenced by environmental conditions and vineyard management practices, such as production levels and water availability.The aim was to assess the nutrient dynamics of a major wine grape variety grown in Australia, for determining the key nutrient uptake periods and to understand the mobilisation patterns in a season.

Material and methods ‐ The own‐rooted 10 year old Shiraz vines utilised for the trial were located in the Riverina, being a warm grape growing region. Uniformly sized vines were selected for 11 excavation dates with four replicates from bud‐burst to leaf‐fall. The above ground section of the vines were separated into different parts, with the number of tissues varying with the destructive harvest dates. The below ground section of the vines were obtained in an allocated area (6 m2/vine) and were excavated to a depth of 1 m, the roots were separated into rootstock and three root sizes. The sub‐ o samples of each tissue were freeze dried and the remaining tissues were oven dried at 70 C, for both procedures the dry weight (DW) was recorded. For the nutrient analysis the tissue samples were ground, and nutrients were determined with an N analyser and an ICP‐OES.

Results ‐ The annual organs showed the highest N concentrations in spring, with the leaves 2.5 % and inflorescences with 3 %, but shoot N concentration increased again at the end of the season to 0.7 % DW. Root N concentrations are at least double the other perennial sections, these reserves decline early in the season and were replenished by leaf‐fall. The changes in concentrations for perennial sections are similar for the other macro nutrients, while they differ for Ca and S in the annual tissues. The N content of the perennial structure declined considerably until flowering, with a sharp increase after harvest. The majority of the N uptake occurred four weeks before flowering and four weeks before veraison, more than half the N of the vinewas allocated to the annual organs at harvest. Other macro nutrients show a pattern of decline and replenishment in the roots and wood and most nutrients were taken up predominantly four weeks prior to flowering. The amounts of nutrients allocated to the perennial structure and annual parts varied between the nutrients, the understanding of the nutrient dynamics will led to an optimisation of nutrient status and supply for grapevines.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bruno HOLZAPFEL (1 ,2), Jason SMITH (1) and Stewart FIELD (3)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
(2) NSW Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia
(3) Nelson Marlborough Institute of Technology, Blenheim 7240, New Zealand

Contact the author

Keywords

Macro nutrients, annual organs, perennial reserves, concentrations, content, dynamics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

Sur la réalité du lien entre le terroir et le produit : de l’analyse sémantique à l’approche écologique

The reflections presented here are a synthesis of a set of research on the construction of a scientific logic concerning the relations between the terroir, the vine, the wine, and on the study of a product, the wine, considered as the resulting from many interactions between factors of various orders. This work has benefited greatly from discussions of an epistemological as well as a technical nature with all the researchers at URVV (Angers) and with our colleagues at the Institut National des Appellations d’Origine, over several years.

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).