GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Abstract

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

Material and methods – We performed a field experiment with 7‐year‐old Cabernet Sauvignon grafted on 110R (Vitis berlandieri × Vitis rupestris) rootstock. A factorial design with leaf removal timing (pre‐ bloom and post‐fruit set, compared to an untreated control) and applied water amounts (1.0, 0.5 and 0.25 of crop evapotranspiration replacement (ETc)) was used. We measured plant water status, leaf gas exchange, primary and secondary metabolites in response to treatments.

Results – Stem water potential was lower in the 0.25 ETc regardless of leaf removal treatments. A 40% reduction in net carbon assimilation was evident in the 0.25 ETc treatments, as well. Likewise stomatal conductance was lower with 0.25 ETc. Leaf removal timing did not affect leaf gas exchanges. There was no effect of leaf removal on components of yield, including the number of berries set. The 0.25 ETc treatment reduced berry mass and yield, but 0.5 and 1.0 ETc treatments were not different from each other. Stem water potential integrals were well related to speed of total soluble solids accumulation. There was a significant interaction of leaf removal and irrigation on pruning weight and Ravaz Index. Reducing the irrigation resulted in a significant increase of anthocyanin concentration; however, there was no increase in its biosynthesis. The ratio of 3’4’5‐OH to 3’4’‐OH anthocyanins was greater with 0.25 and 0.50 ETc compared to 1.0 ETc. Leaf removal affected flavonol content, specifically kaempferol‐3‐o‐ glucoside concentration well as its content a per berry basis which was greater with leaf removal regardless of its timing. Berry skin proanthocyanidins in either concentration or content, or mean degree of polymerization were not affected by treatments applied. Clear skies and longer periods with minimal precipitation paired with reduction in irrigation had a stronger influence on berry chemistry than leaf removal application. Our results indicated that cluster microclimate without leaf removal was already optimized within the confines of this study. Although not as impactful, there still appears to be potential for understanding leaf removal influence on berry physiology and its effect on vine balance in premium regions.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Johann MARTíNEZ‐LUSCHER (1) , Constance Cunty (2), Luca BRILLANTE (3), Runze Yu (1), Gregory Gambetta (2), S. Kaan KURTURAL (1)

(1) Univeristy of California Davis 1 Shields Ave. Davis, CA 95616 USA
(2) UMR EGFV ISVV, 210 Chemin de Leysotte – CS 50008 33882 Villenave d’Ornon Cedex, France
(3) California State University Fresno 2360 E. Barstow Ave. Fresno, CA 93704 USA

Contact the author

Keywords

anthocyanins, flavonol, carbon assimilation, canopy management, proanthocyanidins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Automated red microvinification (1kg) adapted to the needs of varietal innovation

The creation of disease-resistant varieties adapted to climate change is a key challenge for the future of the wine industry. At present, the selection of these new varieties is essentially based on screening for genetic markers of resistance and agronomic criteria, due to the small number of vines available per genotype. Integrating screening for oenological criteria into the early stages of selection would speed up this process.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.