GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sustainable yield management through fruitfulness and bunch architecture manipulation

Sustainable yield management through fruitfulness and bunch architecture manipulation


Context and purpose of the study ‐ Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures and sunny days during bud initiation generally result in high yields in the next season while cold periods during flowering and fruitset can reduce yield. As such, this variation in yield and potentially quality is difficult to predict and therefore manage. Early and more accurate assessments of fruitfulness and bunch architecture may improve these predictions. Vineyard management can be used to manage this variation and limit negative impacts on production. This study summarises research that; (1) investigated different methods for the assessment of bud fertility and bunch architecture and (2) assessed the impact of different management techniques on fruitfulness, bunch architecture and resultant yield.

Material and methods – Vineyard management trials were carried out in South‐eastern Australia during the last 4 years and were performed on Syrah, Cabernet Sauvignon, Semillon, Riesling, Grenache, Tempranillo, Merlot and Sauvignon Blanc. Management strategies investigated include; winter pruning, shoot thinning, shoot leaf removal, and bunch thinning. Bud dissection and image analysis was used to assess bud fertility and the size of inflorescence primordia. Image analysis during the growing season and at harvest was used to assess bunch architecture and bunch volume. Bunch weight and yield were determined at harvest to assess yield performance and validate early predictions.

Results – Bud dissection using image analysis was an effective method for early prediction of fruitfulness and bunch weight (R2=0.79). Similarly, assessing bunch volume at veraison correlated with bunch weight 2 at harvest (R =0.78). Assessment methods used in these studies have the potential to be used commercially for yield prediction and management. Management strategies applied in different experimental trials varied in their impact on both bud fertility and bunch architecture (in the current and future seasons). Not surprisingly, timing, extent of application as well as variety had an impact on the final outcome. Understanding how different vineyard management approaches can manipulate components of yield can help producers to manage their vineyards to desired yield and quality outcomes. 


Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article


Cassandra COLLINS (1), Xiaoyi Wang (1), Marco ZITO (1,2), Jingyun OUYANG (1), Annette JAMES(1), Roberta DE BEI (1), Catherine KIDMAN (1,3), Peter DRY(1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(3) Wynns Coonawarra Estate, PO Box 319 Coonawarra, South Australia 5263, Australia

Contact the author


bunch architecture, canopy management, bud fertility, fruitset, yield management


GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.