Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Abstract

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN). The cropload were controlled at 3 t, 5.2 t and 7.5 t/ha for ‘Beihong’, 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively, through thinning clusters at the 2nd July in 2014. All clusters were sampled in 29th September. The volatiles compound were surveyed in ripening berry (RB), during fermentation processing (FP), completed fermentation (CF) and after 5 months of wine clarification (5MC). The lower cropload level had the less volatiles content in RB. The total volatile contents were 494.5, 1077.9 and 1610.9 µg/kg FW in 3 t, 5.2 t and 7.5 t/ha cropload in the berries of ‘Beihong’ and 1268.6, 1920.9, 3997.7 µg/kg FW in cropload of 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively. During FP, the volatile compositions and contents increased sharply in all cropload levels in both cultivars, and increased more quickly in low cropload than that in high cropload. They increased 95.5, 45.5 and 29.3 times (in ‘Beihong’), and 34.2, 20.7, 8.8 times (in ‘Beimei’) from low to high cropload, respectively. The total volatile contents of low cropload were close or exceed to the high cropload when fermentation finished in both cultivars. During 5MC, the volatile compositions and the contents were reduced largely. The volatiles reduced more slowly in low cropload than that in high cropload. The remained total volatile contents after 5MC were 10.3%, 9.1% and 8.9% in ‘Beihong’, and 11.3%, 10.1% and 10.5% in ‘Beimei’, respectively. Consequently, the total volatile contents in low cropload were higher than that in high cropload in both cultivars. Thirty one and 35 volatile compounds were detected in ‘Beihong’ and ‘Beimei’ wine before bottling, respectively. Among these compounds, esters were dominant (86.3%-89.8% and 78.3%-87.3% of the total volatile in ‘Beihong’ and ‘Beimei’, respectively), and followed by alcohols (8.8% – 10.8% and 7.7%- 10.2%, respectively). In addition, two terpenoids compounds (1,6-Octadien-3-ol, 3,7-dimethyl- and 2,6-Octadien-1-ol,3,7-dimethyl-, (Z)-. 2) were found in ‘Beimei’ wine. The blind wine tasting showed that the assessment scores were higher in 3 t, 5.2 t /ha cropload than 7.5 t/ha cropload for ‘Beihong’, and 3 t /ha cropload was highest in ‘Beimei’.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhenchang Liang*, Benhong Wu, Peige Fan, Qiajun Li, Qiong Ma, Shaohua Li, Weidong Huang, Yan Chen

*Institute of Botany

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.