Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Abstract

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN). The cropload were controlled at 3 t, 5.2 t and 7.5 t/ha for ‘Beihong’, 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively, through thinning clusters at the 2nd July in 2014. All clusters were sampled in 29th September. The volatiles compound were surveyed in ripening berry (RB), during fermentation processing (FP), completed fermentation (CF) and after 5 months of wine clarification (5MC). The lower cropload level had the less volatiles content in RB. The total volatile contents were 494.5, 1077.9 and 1610.9 µg/kg FW in 3 t, 5.2 t and 7.5 t/ha cropload in the berries of ‘Beihong’ and 1268.6, 1920.9, 3997.7 µg/kg FW in cropload of 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively. During FP, the volatile compositions and contents increased sharply in all cropload levels in both cultivars, and increased more quickly in low cropload than that in high cropload. They increased 95.5, 45.5 and 29.3 times (in ‘Beihong’), and 34.2, 20.7, 8.8 times (in ‘Beimei’) from low to high cropload, respectively. The total volatile contents of low cropload were close or exceed to the high cropload when fermentation finished in both cultivars. During 5MC, the volatile compositions and the contents were reduced largely. The volatiles reduced more slowly in low cropload than that in high cropload. The remained total volatile contents after 5MC were 10.3%, 9.1% and 8.9% in ‘Beihong’, and 11.3%, 10.1% and 10.5% in ‘Beimei’, respectively. Consequently, the total volatile contents in low cropload were higher than that in high cropload in both cultivars. Thirty one and 35 volatile compounds were detected in ‘Beihong’ and ‘Beimei’ wine before bottling, respectively. Among these compounds, esters were dominant (86.3%-89.8% and 78.3%-87.3% of the total volatile in ‘Beihong’ and ‘Beimei’, respectively), and followed by alcohols (8.8% – 10.8% and 7.7%- 10.2%, respectively). In addition, two terpenoids compounds (1,6-Octadien-3-ol, 3,7-dimethyl- and 2,6-Octadien-1-ol,3,7-dimethyl-, (Z)-. 2) were found in ‘Beimei’ wine. The blind wine tasting showed that the assessment scores were higher in 3 t, 5.2 t /ha cropload than 7.5 t/ha cropload for ‘Beihong’, and 3 t /ha cropload was highest in ‘Beimei’.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhenchang Liang*, Benhong Wu, Peige Fan, Qiajun Li, Qiong Ma, Shaohua Li, Weidong Huang, Yan Chen

*Institute of Botany

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.