Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Abstract

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN). The cropload were controlled at 3 t, 5.2 t and 7.5 t/ha for ‘Beihong’, 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively, through thinning clusters at the 2nd July in 2014. All clusters were sampled in 29th September. The volatiles compound were surveyed in ripening berry (RB), during fermentation processing (FP), completed fermentation (CF) and after 5 months of wine clarification (5MC). The lower cropload level had the less volatiles content in RB. The total volatile contents were 494.5, 1077.9 and 1610.9 µg/kg FW in 3 t, 5.2 t and 7.5 t/ha cropload in the berries of ‘Beihong’ and 1268.6, 1920.9, 3997.7 µg/kg FW in cropload of 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively. During FP, the volatile compositions and contents increased sharply in all cropload levels in both cultivars, and increased more quickly in low cropload than that in high cropload. They increased 95.5, 45.5 and 29.3 times (in ‘Beihong’), and 34.2, 20.7, 8.8 times (in ‘Beimei’) from low to high cropload, respectively. The total volatile contents of low cropload were close or exceed to the high cropload when fermentation finished in both cultivars. During 5MC, the volatile compositions and the contents were reduced largely. The volatiles reduced more slowly in low cropload than that in high cropload. The remained total volatile contents after 5MC were 10.3%, 9.1% and 8.9% in ‘Beihong’, and 11.3%, 10.1% and 10.5% in ‘Beimei’, respectively. Consequently, the total volatile contents in low cropload were higher than that in high cropload in both cultivars. Thirty one and 35 volatile compounds were detected in ‘Beihong’ and ‘Beimei’ wine before bottling, respectively. Among these compounds, esters were dominant (86.3%-89.8% and 78.3%-87.3% of the total volatile in ‘Beihong’ and ‘Beimei’, respectively), and followed by alcohols (8.8% – 10.8% and 7.7%- 10.2%, respectively). In addition, two terpenoids compounds (1,6-Octadien-3-ol, 3,7-dimethyl- and 2,6-Octadien-1-ol,3,7-dimethyl-, (Z)-. 2) were found in ‘Beimei’ wine. The blind wine tasting showed that the assessment scores were higher in 3 t, 5.2 t /ha cropload than 7.5 t/ha cropload for ‘Beihong’, and 3 t /ha cropload was highest in ‘Beimei’.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhenchang Liang*, Benhong Wu, Peige Fan, Qiajun Li, Qiong Ma, Shaohua Li, Weidong Huang, Yan Chen

*Institute of Botany

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.