Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Abstract

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN). The cropload were controlled at 3 t, 5.2 t and 7.5 t/ha for ‘Beihong’, 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively, through thinning clusters at the 2nd July in 2014. All clusters were sampled in 29th September. The volatiles compound were surveyed in ripening berry (RB), during fermentation processing (FP), completed fermentation (CF) and after 5 months of wine clarification (5MC). The lower cropload level had the less volatiles content in RB. The total volatile contents were 494.5, 1077.9 and 1610.9 µg/kg FW in 3 t, 5.2 t and 7.5 t/ha cropload in the berries of ‘Beihong’ and 1268.6, 1920.9, 3997.7 µg/kg FW in cropload of 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively. During FP, the volatile compositions and contents increased sharply in all cropload levels in both cultivars, and increased more quickly in low cropload than that in high cropload. They increased 95.5, 45.5 and 29.3 times (in ‘Beihong’), and 34.2, 20.7, 8.8 times (in ‘Beimei’) from low to high cropload, respectively. The total volatile contents of low cropload were close or exceed to the high cropload when fermentation finished in both cultivars. During 5MC, the volatile compositions and the contents were reduced largely. The volatiles reduced more slowly in low cropload than that in high cropload. The remained total volatile contents after 5MC were 10.3%, 9.1% and 8.9% in ‘Beihong’, and 11.3%, 10.1% and 10.5% in ‘Beimei’, respectively. Consequently, the total volatile contents in low cropload were higher than that in high cropload in both cultivars. Thirty one and 35 volatile compounds were detected in ‘Beihong’ and ‘Beimei’ wine before bottling, respectively. Among these compounds, esters were dominant (86.3%-89.8% and 78.3%-87.3% of the total volatile in ‘Beihong’ and ‘Beimei’, respectively), and followed by alcohols (8.8% – 10.8% and 7.7%- 10.2%, respectively). In addition, two terpenoids compounds (1,6-Octadien-3-ol, 3,7-dimethyl- and 2,6-Octadien-1-ol,3,7-dimethyl-, (Z)-. 2) were found in ‘Beimei’ wine. The blind wine tasting showed that the assessment scores were higher in 3 t, 5.2 t /ha cropload than 7.5 t/ha cropload for ‘Beihong’, and 3 t /ha cropload was highest in ‘Beimei’.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhenchang Liang*, Benhong Wu, Peige Fan, Qiajun Li, Qiong Ma, Shaohua Li, Weidong Huang, Yan Chen

*Institute of Botany

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.