Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Abstract

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN). The cropload were controlled at 3 t, 5.2 t and 7.5 t/ha for ‘Beihong’, 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively, through thinning clusters at the 2nd July in 2014. All clusters were sampled in 29th September. The volatiles compound were surveyed in ripening berry (RB), during fermentation processing (FP), completed fermentation (CF) and after 5 months of wine clarification (5MC). The lower cropload level had the less volatiles content in RB. The total volatile contents were 494.5, 1077.9 and 1610.9 µg/kg FW in 3 t, 5.2 t and 7.5 t/ha cropload in the berries of ‘Beihong’ and 1268.6, 1920.9, 3997.7 µg/kg FW in cropload of 3 t, 4.5 t and 6 t/ha for ‘Beimei’, respectively. During FP, the volatile compositions and contents increased sharply in all cropload levels in both cultivars, and increased more quickly in low cropload than that in high cropload. They increased 95.5, 45.5 and 29.3 times (in ‘Beihong’), and 34.2, 20.7, 8.8 times (in ‘Beimei’) from low to high cropload, respectively. The total volatile contents of low cropload were close or exceed to the high cropload when fermentation finished in both cultivars. During 5MC, the volatile compositions and the contents were reduced largely. The volatiles reduced more slowly in low cropload than that in high cropload. The remained total volatile contents after 5MC were 10.3%, 9.1% and 8.9% in ‘Beihong’, and 11.3%, 10.1% and 10.5% in ‘Beimei’, respectively. Consequently, the total volatile contents in low cropload were higher than that in high cropload in both cultivars. Thirty one and 35 volatile compounds were detected in ‘Beihong’ and ‘Beimei’ wine before bottling, respectively. Among these compounds, esters were dominant (86.3%-89.8% and 78.3%-87.3% of the total volatile in ‘Beihong’ and ‘Beimei’, respectively), and followed by alcohols (8.8% – 10.8% and 7.7%- 10.2%, respectively). In addition, two terpenoids compounds (1,6-Octadien-3-ol, 3,7-dimethyl- and 2,6-Octadien-1-ol,3,7-dimethyl-, (Z)-. 2) were found in ‘Beimei’ wine. The blind wine tasting showed that the assessment scores were higher in 3 t, 5.2 t /ha cropload than 7.5 t/ha cropload for ‘Beihong’, and 3 t /ha cropload was highest in ‘Beimei’.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhenchang Liang*, Benhong Wu, Peige Fan, Qiajun Li, Qiong Ma, Shaohua Li, Weidong Huang, Yan Chen

*Institute of Botany

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.