Macrowine 2021
IVES 9 IVES Conference Series 9 Grape metabolites, aroma precursors and the complexities of wine flavour

Grape metabolites, aroma precursors and the complexities of wine flavour

Abstract

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally. In this presentation a summary will be presented about recent research into the contribution to wine aroma and flavour from glycoside precursors of terpenes [1], norisoprenoids [1, 2] and phenols [3, 4], and also about aroma compound formation from sesquiterpene- [5] and sulfur-precursors [6, 7]. The diverse mechanisms involved in formation and degradation of wine aroma precursors will be discussed, as well as practical implications for grape growing and winemaking.

1. Black et al. (2015) Terpenoids and their role in wine flavour: recent advances. AJGWR 21, 582–600. 2. Kwasniewski et al. (2010) Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in Riesling. JAFC 58, 6841–6849. 3. Parker et al. (2012) The contribution of several volatile phenols and their glycoconjugates to smoke related sensory properties of red wine. JAFC 60: 2629-2637. 4. Mayr et al. (2014) Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. JAFC 62: 2327-2336. 5.Herderich et al. (2015) Terroir effects on grape and wine aroma compounds. In: Advances in Wine Research; ACS Symposium Series 1203, 131-146. 6. Capone et al. (2012) Effects on 3-mercaptohexan-1-ol precursor concentrations from prolonged storage of Sauvignon Blanc grapes prior to crushing and pressing. JAFC 60: 3515-3523. 7.Viviers et al. (2013) Effects of five metals on the evolution of hydrogen sulfide, methanethiol, and dimethyl sulfide during anaerobic storage of Chardonnay and Shiraz wines. JAFC 61: 12385-12396.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Markus Herderich*

*AWRI

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.