Macrowine 2021
IVES 9 IVES Conference Series 9 Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Abstract

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition. The study was carried out in a vineyard of A.O.C. Rioja, planted in 1999 with cv. Tempranillo (Vitis vinifera L.) grafted on 110-Richter rootstock (2,849 vines ha-1). Vines were trained on a double Cordon Royat. The treatments were: tillage (T), cover crop of barley (B) (Hordeum vulgare L.), and cover crop of clover (C) (Trifolium resupinatum L.). Each treatment consisted of three repetitions. Soil NO3–N was monitored at 0-15 and 15-45 cm soil depth at budbreak, bloom, fruit set, veraison and postharvest during four years (2009, 2010, 2011 and 2012). Soil NO3–N was extracted with 2 M KCl and determined by colorimetry. Grapevine N content was analyzed in leaf tissues (blade and petiole) sampled at bloom and veraison. Nitrogen content in leaves was determined by dry and instantaneous combustion. In each repetition, 15-20 grapevines were harvested. Wines were elaborated following the traditional method used in A.O.C. Rioja for red wines. The biogenic amines content in wines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, isoamylamine and cadaverine) was determined by HPLC. The results showed that the barley cover crop reduced soil NO3–N availability and clover cover crop increased it. Leaf tissues N content, at bloom of third year decreased with the barley treatment in both blade and petiole. In 2012, N content, in both leaf tissues at bloom, was greater with the clover treatment than with both the tillage and the barley treatments. Content of N in leaf tissues indicated that changes in the soil NO3–N affected levels of N in vines. In the fourth season, total content of biogenic amines in wine decreased in the barley treatment respect to both tillage and clover treatments. Correlations were observed between methylamine and the petiole N content at bloom, histamine and ethylamine respect to both leaf tissues at veraison and putrescine with blade at veraison. Finally, total biogenic amines was positively correlated with both leaf tissues at bloom and at veraison. In conclusion, the concentration of biogenic amines in wines can be affected by the N nutritional status of the grapevines, provoked by changes in the soil NO3–N availability as a result of the implanted cover crops effect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Eva Peréz-Álvarez, Fernando Peregrina, Maria Cabrita

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).