Macrowine 2021
IVES 9 IVES Conference Series 9 Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Abstract

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition. The study was carried out in a vineyard of A.O.C. Rioja, planted in 1999 with cv. Tempranillo (Vitis vinifera L.) grafted on 110-Richter rootstock (2,849 vines ha-1). Vines were trained on a double Cordon Royat. The treatments were: tillage (T), cover crop of barley (B) (Hordeum vulgare L.), and cover crop of clover (C) (Trifolium resupinatum L.). Each treatment consisted of three repetitions. Soil NO3–N was monitored at 0-15 and 15-45 cm soil depth at budbreak, bloom, fruit set, veraison and postharvest during four years (2009, 2010, 2011 and 2012). Soil NO3–N was extracted with 2 M KCl and determined by colorimetry. Grapevine N content was analyzed in leaf tissues (blade and petiole) sampled at bloom and veraison. Nitrogen content in leaves was determined by dry and instantaneous combustion. In each repetition, 15-20 grapevines were harvested. Wines were elaborated following the traditional method used in A.O.C. Rioja for red wines. The biogenic amines content in wines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, isoamylamine and cadaverine) was determined by HPLC. The results showed that the barley cover crop reduced soil NO3–N availability and clover cover crop increased it. Leaf tissues N content, at bloom of third year decreased with the barley treatment in both blade and petiole. In 2012, N content, in both leaf tissues at bloom, was greater with the clover treatment than with both the tillage and the barley treatments. Content of N in leaf tissues indicated that changes in the soil NO3–N affected levels of N in vines. In the fourth season, total content of biogenic amines in wine decreased in the barley treatment respect to both tillage and clover treatments. Correlations were observed between methylamine and the petiole N content at bloom, histamine and ethylamine respect to both leaf tissues at veraison and putrescine with blade at veraison. Finally, total biogenic amines was positively correlated with both leaf tissues at bloom and at veraison. In conclusion, the concentration of biogenic amines in wines can be affected by the N nutritional status of the grapevines, provoked by changes in the soil NO3–N availability as a result of the implanted cover crops effect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Eva Peréz-Álvarez, Fernando Peregrina, Maria Cabrita

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.