Macrowine 2021
IVES 9 IVES Conference Series 9 Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Abstract

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition. The study was carried out in a vineyard of A.O.C. Rioja, planted in 1999 with cv. Tempranillo (Vitis vinifera L.) grafted on 110-Richter rootstock (2,849 vines ha-1). Vines were trained on a double Cordon Royat. The treatments were: tillage (T), cover crop of barley (B) (Hordeum vulgare L.), and cover crop of clover (C) (Trifolium resupinatum L.). Each treatment consisted of three repetitions. Soil NO3–N was monitored at 0-15 and 15-45 cm soil depth at budbreak, bloom, fruit set, veraison and postharvest during four years (2009, 2010, 2011 and 2012). Soil NO3–N was extracted with 2 M KCl and determined by colorimetry. Grapevine N content was analyzed in leaf tissues (blade and petiole) sampled at bloom and veraison. Nitrogen content in leaves was determined by dry and instantaneous combustion. In each repetition, 15-20 grapevines were harvested. Wines were elaborated following the traditional method used in A.O.C. Rioja for red wines. The biogenic amines content in wines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, isoamylamine and cadaverine) was determined by HPLC. The results showed that the barley cover crop reduced soil NO3–N availability and clover cover crop increased it. Leaf tissues N content, at bloom of third year decreased with the barley treatment in both blade and petiole. In 2012, N content, in both leaf tissues at bloom, was greater with the clover treatment than with both the tillage and the barley treatments. Content of N in leaf tissues indicated that changes in the soil NO3–N affected levels of N in vines. In the fourth season, total content of biogenic amines in wine decreased in the barley treatment respect to both tillage and clover treatments. Correlations were observed between methylamine and the petiole N content at bloom, histamine and ethylamine respect to both leaf tissues at veraison and putrescine with blade at veraison. Finally, total biogenic amines was positively correlated with both leaf tissues at bloom and at veraison. In conclusion, the concentration of biogenic amines in wines can be affected by the N nutritional status of the grapevines, provoked by changes in the soil NO3–N availability as a result of the implanted cover crops effect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Eva Peréz-Álvarez, Fernando Peregrina, Maria Cabrita

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.