Macrowine 2021
IVES 9 IVES Conference Series 9 Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Abstract

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition. The study was carried out in a vineyard of A.O.C. Rioja, planted in 1999 with cv. Tempranillo (Vitis vinifera L.) grafted on 110-Richter rootstock (2,849 vines ha-1). Vines were trained on a double Cordon Royat. The treatments were: tillage (T), cover crop of barley (B) (Hordeum vulgare L.), and cover crop of clover (C) (Trifolium resupinatum L.). Each treatment consisted of three repetitions. Soil NO3–N was monitored at 0-15 and 15-45 cm soil depth at budbreak, bloom, fruit set, veraison and postharvest during four years (2009, 2010, 2011 and 2012). Soil NO3–N was extracted with 2 M KCl and determined by colorimetry. Grapevine N content was analyzed in leaf tissues (blade and petiole) sampled at bloom and veraison. Nitrogen content in leaves was determined by dry and instantaneous combustion. In each repetition, 15-20 grapevines were harvested. Wines were elaborated following the traditional method used in A.O.C. Rioja for red wines. The biogenic amines content in wines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, isoamylamine and cadaverine) was determined by HPLC. The results showed that the barley cover crop reduced soil NO3–N availability and clover cover crop increased it. Leaf tissues N content, at bloom of third year decreased with the barley treatment in both blade and petiole. In 2012, N content, in both leaf tissues at bloom, was greater with the clover treatment than with both the tillage and the barley treatments. Content of N in leaf tissues indicated that changes in the soil NO3–N affected levels of N in vines. In the fourth season, total content of biogenic amines in wine decreased in the barley treatment respect to both tillage and clover treatments. Correlations were observed between methylamine and the petiole N content at bloom, histamine and ethylamine respect to both leaf tissues at veraison and putrescine with blade at veraison. Finally, total biogenic amines was positively correlated with both leaf tissues at bloom and at veraison. In conclusion, the concentration of biogenic amines in wines can be affected by the N nutritional status of the grapevines, provoked by changes in the soil NO3–N availability as a result of the implanted cover crops effect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Eva Peréz-Álvarez, Fernando Peregrina, Maria Cabrita

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.