Macrowine 2021
IVES 9 IVES Conference Series 9 Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

Abstract

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition. The study was carried out in a vineyard of A.O.C. Rioja, planted in 1999 with cv. Tempranillo (Vitis vinifera L.) grafted on 110-Richter rootstock (2,849 vines ha-1). Vines were trained on a double Cordon Royat. The treatments were: tillage (T), cover crop of barley (B) (Hordeum vulgare L.), and cover crop of clover (C) (Trifolium resupinatum L.). Each treatment consisted of three repetitions. Soil NO3–N was monitored at 0-15 and 15-45 cm soil depth at budbreak, bloom, fruit set, veraison and postharvest during four years (2009, 2010, 2011 and 2012). Soil NO3–N was extracted with 2 M KCl and determined by colorimetry. Grapevine N content was analyzed in leaf tissues (blade and petiole) sampled at bloom and veraison. Nitrogen content in leaves was determined by dry and instantaneous combustion. In each repetition, 15-20 grapevines were harvested. Wines were elaborated following the traditional method used in A.O.C. Rioja for red wines. The biogenic amines content in wines (histamine, methylamine, ethylamine, tyramine, phenylethylamine, putrescine, isoamylamine and cadaverine) was determined by HPLC. The results showed that the barley cover crop reduced soil NO3–N availability and clover cover crop increased it. Leaf tissues N content, at bloom of third year decreased with the barley treatment in both blade and petiole. In 2012, N content, in both leaf tissues at bloom, was greater with the clover treatment than with both the tillage and the barley treatments. Content of N in leaf tissues indicated that changes in the soil NO3–N affected levels of N in vines. In the fourth season, total content of biogenic amines in wine decreased in the barley treatment respect to both tillage and clover treatments. Correlations were observed between methylamine and the petiole N content at bloom, histamine and ethylamine respect to both leaf tissues at veraison and putrescine with blade at veraison. Finally, total biogenic amines was positively correlated with both leaf tissues at bloom and at veraison. In conclusion, the concentration of biogenic amines in wines can be affected by the N nutritional status of the grapevines, provoked by changes in the soil NO3–N availability as a result of the implanted cover crops effect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Eva Peréz-Álvarez, Fernando Peregrina, Maria Cabrita

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.