GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Abstract

Context and purpose of the study – Fifteen nepoviruses are able to induce fanleaf degeneration in grapes which is economically the most imprtant viral disease. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease worldwide and Arabis mosaic virus (ArMV) is the second most important nepovirus involved in this disease in Europe. A third nepovirus has been described in France. Indeed, Tomato Black Ring Virus (TBRV) was detected in vines for the first time in France on a multi‐varietal plot in 2009. The objective of the study was to quantify the impact of TBRV on two varieties of this plot.

Material and methods – Quantitative and qualitative impact of TBRV assessment was carried out in 2010 and 2011. Over 200 vines were analyzed by ELISA tests in order to determine their virus status. Vines were distributed in four groups: 40 vines of Merlot TBRV positive versus 40 merlot vines virus free and 40 vines of Cabernet franc TBRV positive versus 40 free of the virus. For each vine, the presence of eleven other viruses was investigated. In 2010 and 2011 shoot length was measured. In 2010, grape composition was analyzed to determine technological maturity and phenolic maturity of each vine in relation with its virus status.

Results – Shoot length and total pruning weight is reduced in TBRV infected vines, while lateral number is increased. All yield parameters are affected by the presence of the virus. Vines affected by TBRV produce less bunches and berries and smaller berries compared to healthy vines. Yield loss is greater on Merlot compared to Cabernet franc. Grape quality parameters seem to be less affected by the presence of TBRV. These results provide essential elements for the management of the viral disease in the vineyard.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Coralie DEWASME LAVEAU (1), Séverine MARY (2), Guillaume DARRIEUTORT (2), Laurent AUDEGUIN (3),Maarten VAN HELDEN (4), Cornelis VAN LEEUWEN (1)

(1) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
(2) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan, France
(3) Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, 30240 Le Grau du Roi, France
(4) SARDI Entomology, Urrbrae SA 5064, University of Adelaide, Australia

Contact the author

Keywords

Grapevine, virus, grape quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.