Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Abstract

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.3 Thus, we focused on the impact of five HA on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of five HA and the red wine fruity pool composed of thirteen ethyl esters and acetates, all at the average concentrations found in red wine. Sensory analysis highlighted the individual particular behavior of two HA, 3-methylbutan-1-ol and butan-1-ol, added individually at supra- and infra-threshold concentrations, respectively. Furthermore, these two compounds reduced the “olfactory threshold” of the fruity mixture as well as modified the qualitative perception of the fruity reconstitution. Adding five HA to different matrices and at various concentrations, representative of the diversity of wine composition, revealed a new remarkable perceptive interaction, and more precisely, a masking effect on fruity aromas perception. Their simultaneous addition to the model solution also modified the qualitative perception of the fruity reconstitution, particularly exacerbating the perception of butyric and solvent notes and attenuating the perception of fruity notes.4 This study, the first one devoted to the impact of HA on fruity aromatic expression, demonstrated that HA participate, both quantitatively and qualitatively, in masking fruity aroma perception of a wine fruity model mixture. These findings emphasized the importance of HA, a chemical family described for a long time which could therefore lead to a decrease of the perception of fruity notes in red wine. Thus the modulation of their levels during winemaking process is likely to influence indirectly the sensory quality of red wine. Keywords: red wine, perceptive interactions, higher alcohols, ethyl esters and acetates.

1. Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57 (9), 3702–3708. 2. Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. J. Agric. Food Chem. 2013, 61 (36), 8504–8513. 3. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud-Funel, A. Handbook of Enology – The chemistry of wine: Stabilisation and treatments, 6th ed.; Dunod; 2012; Vol. 1. 4. Cameleyre, M., Lytra, G., Tempère, S., Barbe, J-C. J. Agric. Food Chem. 2015. 63 (44), pp 9777–9788.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Christophe Barbe*, Georgia Lytra, Margaux Cameleyre, Sophie Tempere

*Université De Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.