Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Abstract

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.3 Thus, we focused on the impact of five HA on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of five HA and the red wine fruity pool composed of thirteen ethyl esters and acetates, all at the average concentrations found in red wine. Sensory analysis highlighted the individual particular behavior of two HA, 3-methylbutan-1-ol and butan-1-ol, added individually at supra- and infra-threshold concentrations, respectively. Furthermore, these two compounds reduced the “olfactory threshold” of the fruity mixture as well as modified the qualitative perception of the fruity reconstitution. Adding five HA to different matrices and at various concentrations, representative of the diversity of wine composition, revealed a new remarkable perceptive interaction, and more precisely, a masking effect on fruity aromas perception. Their simultaneous addition to the model solution also modified the qualitative perception of the fruity reconstitution, particularly exacerbating the perception of butyric and solvent notes and attenuating the perception of fruity notes.4 This study, the first one devoted to the impact of HA on fruity aromatic expression, demonstrated that HA participate, both quantitatively and qualitatively, in masking fruity aroma perception of a wine fruity model mixture. These findings emphasized the importance of HA, a chemical family described for a long time which could therefore lead to a decrease of the perception of fruity notes in red wine. Thus the modulation of their levels during winemaking process is likely to influence indirectly the sensory quality of red wine. Keywords: red wine, perceptive interactions, higher alcohols, ethyl esters and acetates.

1. Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57 (9), 3702–3708. 2. Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. J. Agric. Food Chem. 2013, 61 (36), 8504–8513. 3. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud-Funel, A. Handbook of Enology – The chemistry of wine: Stabilisation and treatments, 6th ed.; Dunod; 2012; Vol. 1. 4. Cameleyre, M., Lytra, G., Tempère, S., Barbe, J-C. J. Agric. Food Chem. 2015. 63 (44), pp 9777–9788.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Christophe Barbe*, Georgia Lytra, Margaux Cameleyre, Sophie Tempere

*Université De Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.