Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Abstract

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.3 Thus, we focused on the impact of five HA on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of five HA and the red wine fruity pool composed of thirteen ethyl esters and acetates, all at the average concentrations found in red wine. Sensory analysis highlighted the individual particular behavior of two HA, 3-methylbutan-1-ol and butan-1-ol, added individually at supra- and infra-threshold concentrations, respectively. Furthermore, these two compounds reduced the “olfactory threshold” of the fruity mixture as well as modified the qualitative perception of the fruity reconstitution. Adding five HA to different matrices and at various concentrations, representative of the diversity of wine composition, revealed a new remarkable perceptive interaction, and more precisely, a masking effect on fruity aromas perception. Their simultaneous addition to the model solution also modified the qualitative perception of the fruity reconstitution, particularly exacerbating the perception of butyric and solvent notes and attenuating the perception of fruity notes.4 This study, the first one devoted to the impact of HA on fruity aromatic expression, demonstrated that HA participate, both quantitatively and qualitatively, in masking fruity aroma perception of a wine fruity model mixture. These findings emphasized the importance of HA, a chemical family described for a long time which could therefore lead to a decrease of the perception of fruity notes in red wine. Thus the modulation of their levels during winemaking process is likely to influence indirectly the sensory quality of red wine. Keywords: red wine, perceptive interactions, higher alcohols, ethyl esters and acetates.

1. Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57 (9), 3702–3708. 2. Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. J. Agric. Food Chem. 2013, 61 (36), 8504–8513. 3. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud-Funel, A. Handbook of Enology – The chemistry of wine: Stabilisation and treatments, 6th ed.; Dunod; 2012; Vol. 1. 4. Cameleyre, M., Lytra, G., Tempère, S., Barbe, J-C. J. Agric. Food Chem. 2015. 63 (44), pp 9777–9788.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Christophe Barbe*, Georgia Lytra, Margaux Cameleyre, Sophie Tempere

*Université De Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.