Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Abstract

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.3 Thus, we focused on the impact of five HA on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of five HA and the red wine fruity pool composed of thirteen ethyl esters and acetates, all at the average concentrations found in red wine. Sensory analysis highlighted the individual particular behavior of two HA, 3-methylbutan-1-ol and butan-1-ol, added individually at supra- and infra-threshold concentrations, respectively. Furthermore, these two compounds reduced the “olfactory threshold” of the fruity mixture as well as modified the qualitative perception of the fruity reconstitution. Adding five HA to different matrices and at various concentrations, representative of the diversity of wine composition, revealed a new remarkable perceptive interaction, and more precisely, a masking effect on fruity aromas perception. Their simultaneous addition to the model solution also modified the qualitative perception of the fruity reconstitution, particularly exacerbating the perception of butyric and solvent notes and attenuating the perception of fruity notes.4 This study, the first one devoted to the impact of HA on fruity aromatic expression, demonstrated that HA participate, both quantitatively and qualitatively, in masking fruity aroma perception of a wine fruity model mixture. These findings emphasized the importance of HA, a chemical family described for a long time which could therefore lead to a decrease of the perception of fruity notes in red wine. Thus the modulation of their levels during winemaking process is likely to influence indirectly the sensory quality of red wine. Keywords: red wine, perceptive interactions, higher alcohols, ethyl esters and acetates.

1. Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57 (9), 3702–3708. 2. Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. J. Agric. Food Chem. 2013, 61 (36), 8504–8513. 3. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud-Funel, A. Handbook of Enology – The chemistry of wine: Stabilisation and treatments, 6th ed.; Dunod; 2012; Vol. 1. 4. Cameleyre, M., Lytra, G., Tempère, S., Barbe, J-C. J. Agric. Food Chem. 2015. 63 (44), pp 9777–9788.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Christophe Barbe*, Georgia Lytra, Margaux Cameleyre, Sophie Tempere

*Université De Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.