Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

Abstract

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.3 Thus, we focused on the impact of five HA on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of five HA and the red wine fruity pool composed of thirteen ethyl esters and acetates, all at the average concentrations found in red wine. Sensory analysis highlighted the individual particular behavior of two HA, 3-methylbutan-1-ol and butan-1-ol, added individually at supra- and infra-threshold concentrations, respectively. Furthermore, these two compounds reduced the “olfactory threshold” of the fruity mixture as well as modified the qualitative perception of the fruity reconstitution. Adding five HA to different matrices and at various concentrations, representative of the diversity of wine composition, revealed a new remarkable perceptive interaction, and more precisely, a masking effect on fruity aromas perception. Their simultaneous addition to the model solution also modified the qualitative perception of the fruity reconstitution, particularly exacerbating the perception of butyric and solvent notes and attenuating the perception of fruity notes.4 This study, the first one devoted to the impact of HA on fruity aromatic expression, demonstrated that HA participate, both quantitatively and qualitatively, in masking fruity aroma perception of a wine fruity model mixture. These findings emphasized the importance of HA, a chemical family described for a long time which could therefore lead to a decrease of the perception of fruity notes in red wine. Thus the modulation of their levels during winemaking process is likely to influence indirectly the sensory quality of red wine. Keywords: red wine, perceptive interactions, higher alcohols, ethyl esters and acetates.

1. Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57 (9), 3702–3708. 2. Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. J. Agric. Food Chem. 2013, 61 (36), 8504–8513. 3. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud-Funel, A. Handbook of Enology – The chemistry of wine: Stabilisation and treatments, 6th ed.; Dunod; 2012; Vol. 1. 4. Cameleyre, M., Lytra, G., Tempère, S., Barbe, J-C. J. Agric. Food Chem. 2015. 63 (44), pp 9777–9788.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Christophe Barbe*, Georgia Lytra, Margaux Cameleyre, Sophie Tempere

*Université De Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).