Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Abstract

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium. Geosmin, an off-flavour commonly associated with musty or mouldy aromas was only detected in the P. expansum culture 4 days post inoculation. Low levels of geosmin were also detected in the A. carbonarius culture 7 days post inoculation. Methylisoborneol (MIB), another metabolite associated with musty aromas was identified only in grape juice medium inoculated with B. cinerea. Detached surface-sterilised Vitis vinifera (cv. Chardonnay) berries (13.5 ⁰Bx) were inoculated by placing 104 fungal spores on to the apex of each berry. The concentration of 1-octen-3-ol was significantly higher in grapes inoculated with either A. carbonarius, or Penicillium expansum (range 204 – 850 ng/L) than in grapes inoculated with A. niger or B. cinerea (24.8 and 34.5 ng/L respectively) five days post-inoculation. Berries infected with A. carbonarius had the highest concentrations of methylisoborneol. Elevated levels of 1-octen-3-one were also observed in all inoculated berries. Berries inoculated with A. carbonarius had significantly higher levels of gluconic acid (16.3 g/L) compared to the other fungi (range 0.53 – 1.62 g/L). The results indicate that different fungal pathogens produce a similar range of off flavours but the relative proportions when expressed on a dry fungal mass basis when expressed with respect to ergosterol, v ary. This may in turn influence the sensory properties of wine made from different batches of bunch rot affected grapes.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Christopher Steel*, Andrew Clark, John Blackman, Lachlan Schwarz, Leigh Schmidtke, Paul Tauvel

*NWGIC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.