Macrowine 2021
IVES 9 IVES Conference Series 9 Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Abstract

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES). The binding efficiency of specific classes of wine macromolecules and wine sulfur compounds for copper(II) and iron(II) was also assessed, and related to the metal categories found in the surveyed wines. The wine macromolecules examined included isolated white wine protein, white wine polysaccharide, red wine polyphenols (including procyanidins and monomeric phenolic compounds), and white wine polyphenols. The sulfur compounds included hydrogen sulfide, methanethiol, glutathione and thiol-substituted phenolic compounds. For the volatile sulfur compounds, the free and bound-forms were also measured by gas chromatography with sulfur chemiluminescence detection (GC-SCD). The binding was assessed by mixing the wine components with copper (II) (0.4 mg/l), iron (II) (3 mg/l) and two different metal ion mixtures (Fe 3 mg/l + Cu 0.4 mg/l and 3 mg/l + 0.2 mg/l) in a model wine system (pH 3.2) in low oxygen wine conditions. The results showed that in the wines surveyed the metal ions had significant variability in fractionation, with a higher proportion of bound copper than iron. From the binding studies, it was found that a component of the red wine polyphenol wine fraction demonstrated evidence of interaction with both copper and iron, whilst hydrogen sulfide was a significant binder of copper. Importantly, the binding between hydrogen sulfide and copper was shown to be reversible in wine conditions. The other wine macromolecules did not show any significant binding to the metal ions. The results demonstrate an important insight into the predominant forms of iron and copper ions in wine, and also insight into the main binders, especially from the perspective of wine macromolecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Nikolaos Kontoudakis*, Andrew Clark, Eric Wilkes, Geoffrey Scollary, Mark Smith, Paul Smith

*CSU/NWGIC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.