Macrowine 2021
IVES 9 IVES Conference Series 9 Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Abstract

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found. Therefore, the aim of this work was to evaluate the foam characteristics of these wines, and compare them with that of white and rosé sparkling wines. Different white, rosé and red sparkling wines were elaborated from different Spanish grape varieties and vintages, and with different aging time on lees, following the champenoise method. The foam measurement of these sparkling wines was carried out using the Mosalux equipment, and three parameters were determined: HM (expressed in mm that represents the foamability), HS (expressed in mm that represents the persistence of the foam collar), and TS (expressed in sec that could represent the foam stability time once effervescence has decreased The grape variety was the main factor that affected the foam characteristics of the sparkling wines, probably due to grape variety has a great influence on the wine composition [4-5]. The HM values of red sparkling wines were lower than those of rosé wines and some of white wines (Godello and Verdejo). Higher differences between sparkling wines were found in HS and TS parameters. Red sparkling wines showed higher HS and TS values than white and rosé sparkling wines elaborated from other grape varieties. In general, white sparkling wines showed lower HS and TS values than the other wines, with the exception of Verdejo wines that showed similar values than Garnacha rosé wines. Acknowledgments The authors thank the INIA and the Ministry of Economy and Competitiveness for financing this study through the projects RTA2009-00029-C02-01 and RTA2012-00092-C02-01 (with FEDER funds).

References
[1] Buxaderas, S.; López-Tamames, E. (2012). Adv. Food Nutr. Res. 66: 1-45 [2] Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martín-Álvarez, P.J.; Polo, M.C. (2000). Food Chem. 70: 309-317 [3] Gallart, M.; López-Tamames, E.; Suberbiola, G.; Buxaderas, S. (2002). J. Agric. Food Chem. 50: 7042-7045. [4] Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. (2013). Am. J. Enol. Vitic. 64: 39-49 [5] Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. (2013). Eur. Food Res. Technol. 236: 827-841

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Pérez-Magariño*, Belén Ayestarán, Carlos González-Huerta, Leticia Martínez-Lapuente, Marta Bueno-Herrera, Mirian González-Lázaro, Pedro López de la Cuesta, Zenaida Guadalupe

*Itacyl

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.