Macrowine 2021
IVES 9 IVES Conference Series 9 Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Abstract

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found. Therefore, the aim of this work was to evaluate the foam characteristics of these wines, and compare them with that of white and rosé sparkling wines. Different white, rosé and red sparkling wines were elaborated from different Spanish grape varieties and vintages, and with different aging time on lees, following the champenoise method. The foam measurement of these sparkling wines was carried out using the Mosalux equipment, and three parameters were determined: HM (expressed in mm that represents the foamability), HS (expressed in mm that represents the persistence of the foam collar), and TS (expressed in sec that could represent the foam stability time once effervescence has decreased The grape variety was the main factor that affected the foam characteristics of the sparkling wines, probably due to grape variety has a great influence on the wine composition [4-5]. The HM values of red sparkling wines were lower than those of rosé wines and some of white wines (Godello and Verdejo). Higher differences between sparkling wines were found in HS and TS parameters. Red sparkling wines showed higher HS and TS values than white and rosé sparkling wines elaborated from other grape varieties. In general, white sparkling wines showed lower HS and TS values than the other wines, with the exception of Verdejo wines that showed similar values than Garnacha rosé wines. Acknowledgments The authors thank the INIA and the Ministry of Economy and Competitiveness for financing this study through the projects RTA2009-00029-C02-01 and RTA2012-00092-C02-01 (with FEDER funds).

References
[1] Buxaderas, S.; López-Tamames, E. (2012). Adv. Food Nutr. Res. 66: 1-45 [2] Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martín-Álvarez, P.J.; Polo, M.C. (2000). Food Chem. 70: 309-317 [3] Gallart, M.; López-Tamames, E.; Suberbiola, G.; Buxaderas, S. (2002). J. Agric. Food Chem. 50: 7042-7045. [4] Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. (2013). Am. J. Enol. Vitic. 64: 39-49 [5] Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. (2013). Eur. Food Res. Technol. 236: 827-841

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Pérez-Magariño*, Belén Ayestarán, Carlos González-Huerta, Leticia Martínez-Lapuente, Marta Bueno-Herrera, Mirian González-Lázaro, Pedro López de la Cuesta, Zenaida Guadalupe

*Itacyl

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).