Macrowine 2021
IVES 9 IVES Conference Series 9 Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Abstract

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found. Therefore, the aim of this work was to evaluate the foam characteristics of these wines, and compare them with that of white and rosé sparkling wines. Different white, rosé and red sparkling wines were elaborated from different Spanish grape varieties and vintages, and with different aging time on lees, following the champenoise method. The foam measurement of these sparkling wines was carried out using the Mosalux equipment, and three parameters were determined: HM (expressed in mm that represents the foamability), HS (expressed in mm that represents the persistence of the foam collar), and TS (expressed in sec that could represent the foam stability time once effervescence has decreased The grape variety was the main factor that affected the foam characteristics of the sparkling wines, probably due to grape variety has a great influence on the wine composition [4-5]. The HM values of red sparkling wines were lower than those of rosé wines and some of white wines (Godello and Verdejo). Higher differences between sparkling wines were found in HS and TS parameters. Red sparkling wines showed higher HS and TS values than white and rosé sparkling wines elaborated from other grape varieties. In general, white sparkling wines showed lower HS and TS values than the other wines, with the exception of Verdejo wines that showed similar values than Garnacha rosé wines. Acknowledgments The authors thank the INIA and the Ministry of Economy and Competitiveness for financing this study through the projects RTA2009-00029-C02-01 and RTA2012-00092-C02-01 (with FEDER funds).

References
[1] Buxaderas, S.; López-Tamames, E. (2012). Adv. Food Nutr. Res. 66: 1-45 [2] Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martín-Álvarez, P.J.; Polo, M.C. (2000). Food Chem. 70: 309-317 [3] Gallart, M.; López-Tamames, E.; Suberbiola, G.; Buxaderas, S. (2002). J. Agric. Food Chem. 50: 7042-7045. [4] Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. (2013). Am. J. Enol. Vitic. 64: 39-49 [5] Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. (2013). Eur. Food Res. Technol. 236: 827-841

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Pérez-Magariño*, Belén Ayestarán, Carlos González-Huerta, Leticia Martínez-Lapuente, Marta Bueno-Herrera, Mirian González-Lázaro, Pedro López de la Cuesta, Zenaida Guadalupe

*Itacyl

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).