GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape phylloxera meets drought: increased risk for vines under climate change?

Grape phylloxera meets drought: increased risk for vines under climate change?

Abstract

Context and purpose of the study ‐ Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities, with particular regard to viticulture. Moreover, in the last decades the wine‐making industry is further threatened by new outbreaks of grape phylloxera (Daktulosphaira vitifoliae Fitch) which have been reported worldwide. Phylloxera is a galling aphid native to eastern North America that targets grapevines as its single host and source of nutrition. Knowledge on how the aphid affects the whole‐plant physiological functions is limited, in particular when the phylloxera attack is accompanied by drought stress. In the light of prolonged drought periods forecasted for the near future in many viticultural regions, it is fundamental to understand and predict eventual negative cumulative effects of a combined biotic‐abiotic stress.

Material and methods ‐ In the present study we monitored water and carbon metabolism, gas exchange and photosystem functionality of grapevines subjected to drought stress (D) and/or phylloxera infestation (P). The experiment was carried out in pots using Riesling grafted on Teleki 5C (RR) and own‐ rooted Teleki 5C (5C, rootstock). P vines were root inoculated with phylloxera eggs collected from a field population. A subset of plants was subjected to an 8 week‐long moderate drought stress (PD), while the others were maintained in well‐watered conditions (PI). Non‐inoculated control plants were also included in the trial for both irrigated (CI) and drought stress (CD) conditions. Non‐structural carbohydrates (NSC) were measured in young leaves developed under the treatments. Differences in root infestation (presence of nodosities) were also investigated among experimental treatments.

Results ‐ Drought stress had a significant impact on the plants gas exchange leading to the reduction of NSC in the leaves. On the other hand, infestation with phylloxera did not induce notable shifts in physiological traits with the exception of a marked increase of leaf surface temperature recorded in RR (+1°C recorded in P plants compared to C). The insect induced starch depletion and enhanced glucose synthesis in the leaves. The inoculation efficiency was higher in D plants compared to I ones, suggesting that events of water shortage favor the insect spread. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Tadeja SAVI, Almudena GARCÍA GONZÁLEZ, Jose Carlos HERRERA, Miroslaw WIERZYK, Astrid FORNECK

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, A-3430 Tulln.

Contact the author

Keywords

Drought stress, Gas exchange, Carbon metabolism, Biotic stress, Riesling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Modernizing wine legislation for a resilient and competitive industry: lessons from Republic of Moldova’s legal and policy reforms

The evolution of Republic of Moldova’s wine industry offers a compelling case study in how legal harmonization and institutional reform can catalyze the transformation of a national wine sector.

Multisensory experiential wine marketing

Interest in the pairing, or matching, of wine with music goes way back, with commentators initially using musical metaphors merely to describe the wines that they were writing about. More recently, however, this has transformed into a growing range of multisensory tasting events in which wine and music are deliberately paired to assess, or increasingly to illustrate, the impact of the latter on

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques.

Soil, foliar, and juice nitrogen application: influence on fruit and wine for Chardonel grown in Virginia

Nitrogen (N) is applied in the vineyard or the winery in wine production systems. The influence of different routes of N application is not well understood.