GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape phylloxera meets drought: increased risk for vines under climate change?

Grape phylloxera meets drought: increased risk for vines under climate change?

Abstract

Context and purpose of the study ‐ Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities, with particular regard to viticulture. Moreover, in the last decades the wine‐making industry is further threatened by new outbreaks of grape phylloxera (Daktulosphaira vitifoliae Fitch) which have been reported worldwide. Phylloxera is a galling aphid native to eastern North America that targets grapevines as its single host and source of nutrition. Knowledge on how the aphid affects the whole‐plant physiological functions is limited, in particular when the phylloxera attack is accompanied by drought stress. In the light of prolonged drought periods forecasted for the near future in many viticultural regions, it is fundamental to understand and predict eventual negative cumulative effects of a combined biotic‐abiotic stress.

Material and methods ‐ In the present study we monitored water and carbon metabolism, gas exchange and photosystem functionality of grapevines subjected to drought stress (D) and/or phylloxera infestation (P). The experiment was carried out in pots using Riesling grafted on Teleki 5C (RR) and own‐ rooted Teleki 5C (5C, rootstock). P vines were root inoculated with phylloxera eggs collected from a field population. A subset of plants was subjected to an 8 week‐long moderate drought stress (PD), while the others were maintained in well‐watered conditions (PI). Non‐inoculated control plants were also included in the trial for both irrigated (CI) and drought stress (CD) conditions. Non‐structural carbohydrates (NSC) were measured in young leaves developed under the treatments. Differences in root infestation (presence of nodosities) were also investigated among experimental treatments.

Results ‐ Drought stress had a significant impact on the plants gas exchange leading to the reduction of NSC in the leaves. On the other hand, infestation with phylloxera did not induce notable shifts in physiological traits with the exception of a marked increase of leaf surface temperature recorded in RR (+1°C recorded in P plants compared to C). The insect induced starch depletion and enhanced glucose synthesis in the leaves. The inoculation efficiency was higher in D plants compared to I ones, suggesting that events of water shortage favor the insect spread. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Tadeja SAVI, Almudena GARCÍA GONZÁLEZ, Jose Carlos HERRERA, Miroslaw WIERZYK, Astrid FORNECK

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, A-3430 Tulln.

Contact the author

Keywords

Drought stress, Gas exchange, Carbon metabolism, Biotic stress, Riesling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Global geo changes, including climate: viticulture result on new viticulture-viticolture in a territory both further north of the region and at high altitude

Context and purpose of the study. In relation to global geo changes, including climatic ones, the following research has been conducted: 1. In Europe’s highest vineyard (1395 m.a.s.l.) (Cargnello, 2014÷2021; Cargnello & Col. 2019÷2021)

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon.