GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape phylloxera meets drought: increased risk for vines under climate change?

Grape phylloxera meets drought: increased risk for vines under climate change?

Abstract

Context and purpose of the study ‐ Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities, with particular regard to viticulture. Moreover, in the last decades the wine‐making industry is further threatened by new outbreaks of grape phylloxera (Daktulosphaira vitifoliae Fitch) which have been reported worldwide. Phylloxera is a galling aphid native to eastern North America that targets grapevines as its single host and source of nutrition. Knowledge on how the aphid affects the whole‐plant physiological functions is limited, in particular when the phylloxera attack is accompanied by drought stress. In the light of prolonged drought periods forecasted for the near future in many viticultural regions, it is fundamental to understand and predict eventual negative cumulative effects of a combined biotic‐abiotic stress.

Material and methods ‐ In the present study we monitored water and carbon metabolism, gas exchange and photosystem functionality of grapevines subjected to drought stress (D) and/or phylloxera infestation (P). The experiment was carried out in pots using Riesling grafted on Teleki 5C (RR) and own‐ rooted Teleki 5C (5C, rootstock). P vines were root inoculated with phylloxera eggs collected from a field population. A subset of plants was subjected to an 8 week‐long moderate drought stress (PD), while the others were maintained in well‐watered conditions (PI). Non‐inoculated control plants were also included in the trial for both irrigated (CI) and drought stress (CD) conditions. Non‐structural carbohydrates (NSC) were measured in young leaves developed under the treatments. Differences in root infestation (presence of nodosities) were also investigated among experimental treatments.

Results ‐ Drought stress had a significant impact on the plants gas exchange leading to the reduction of NSC in the leaves. On the other hand, infestation with phylloxera did not induce notable shifts in physiological traits with the exception of a marked increase of leaf surface temperature recorded in RR (+1°C recorded in P plants compared to C). The insect induced starch depletion and enhanced glucose synthesis in the leaves. The inoculation efficiency was higher in D plants compared to I ones, suggesting that events of water shortage favor the insect spread. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Tadeja SAVI, Almudena GARCÍA GONZÁLEZ, Jose Carlos HERRERA, Miroslaw WIERZYK, Astrid FORNECK

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, A-3430 Tulln.

Contact the author

Keywords

Drought stress, Gas exchange, Carbon metabolism, Biotic stress, Riesling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Les effets du terroir ou l’expression des potentiels à valoriser

Research into the effects of the Terroir is of major interest for the wine sector. The study of Terroir-Vine-Grape relations, even if it is complex, is fundamental for all viticulture: indeed, the quality of the grape must be the result of the most reasoned agro-viticultural management of the vine possible, which must first, to respect a production balance. The goal sought by the winegrower is to obtain a wine, the optimized result of the interactions Terroir-Grape variety. This link to the terroir is therefore essential to establish by taking into account on the one hand the behavior of the vine (which is the cause), and on the other hand, its effects on the grapes and finally on the wine.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.

Modernizing wine legislation for a resilient and competitive industry: lessons from Republic of Moldova’s legal and policy reforms

The evolution of Republic of Moldova’s wine industry offers a compelling case study in how legal harmonization and institutional reform can catalyze the transformation of a national wine sector.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.