GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Grape phylloxera meets drought: increased risk for vines under climate change?

Grape phylloxera meets drought: increased risk for vines under climate change?

Abstract

Context and purpose of the study ‐ Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities, with particular regard to viticulture. Moreover, in the last decades the wine‐making industry is further threatened by new outbreaks of grape phylloxera (Daktulosphaira vitifoliae Fitch) which have been reported worldwide. Phylloxera is a galling aphid native to eastern North America that targets grapevines as its single host and source of nutrition. Knowledge on how the aphid affects the whole‐plant physiological functions is limited, in particular when the phylloxera attack is accompanied by drought stress. In the light of prolonged drought periods forecasted for the near future in many viticultural regions, it is fundamental to understand and predict eventual negative cumulative effects of a combined biotic‐abiotic stress.

Material and methods ‐ In the present study we monitored water and carbon metabolism, gas exchange and photosystem functionality of grapevines subjected to drought stress (D) and/or phylloxera infestation (P). The experiment was carried out in pots using Riesling grafted on Teleki 5C (RR) and own‐ rooted Teleki 5C (5C, rootstock). P vines were root inoculated with phylloxera eggs collected from a field population. A subset of plants was subjected to an 8 week‐long moderate drought stress (PD), while the others were maintained in well‐watered conditions (PI). Non‐inoculated control plants were also included in the trial for both irrigated (CI) and drought stress (CD) conditions. Non‐structural carbohydrates (NSC) were measured in young leaves developed under the treatments. Differences in root infestation (presence of nodosities) were also investigated among experimental treatments.

Results ‐ Drought stress had a significant impact on the plants gas exchange leading to the reduction of NSC in the leaves. On the other hand, infestation with phylloxera did not induce notable shifts in physiological traits with the exception of a marked increase of leaf surface temperature recorded in RR (+1°C recorded in P plants compared to C). The insect induced starch depletion and enhanced glucose synthesis in the leaves. The inoculation efficiency was higher in D plants compared to I ones, suggesting that events of water shortage favor the insect spread. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Tadeja SAVI, Almudena GARCÍA GONZÁLEZ, Jose Carlos HERRERA, Miroslaw WIERZYK, Astrid FORNECK

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad Lorenz Straße 24, A-3430 Tulln.

Contact the author

Keywords

Drought stress, Gas exchange, Carbon metabolism, Biotic stress, Riesling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.