Macrowine 2021
IVES 9 IVES Conference Series 9 The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Abstract

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L [Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples. Concentrations of about 2-3 mg/L have been reported by Minuti et al. [2006] for red wines while Romboli et al. [2015] observed definitely higher concentrations – up to 25 mg/L – in case of slow fermentations of Sangiovese wines processed in lab-scale. Oddly, in spite of the non-negligible concentration of these compounds in wine, few data are available regarding the concentration variability of TYR and HYT due to not genetically engineered Saccharomyces cerevisiae strains available on the market and used in winery conditions. To investigate this variability, 7 yeast strains (Zymaflore VL1; Fermol Arome Plus; AWRI 796; La Claire EM2; Anchor VIN13; Zymaflore VL3; Mycoferm CRU 31) were used (15 g/hL) to ferment – on semi-industrial scale, at 18-21°C – five Pinot gris juices achieved from different vineyards. They were adequately provided with natural assimilable nitrogen (163-214 mg/L), and had been well settled (36 h, 10°C, < 100 NTU) and supplemented with 20-30 mg/L SO2. After alcoholic fermentation, wines were sulphited (80 mg/L) and maintained sur lies under argon blanketing (4°C x 90 days), with batonnage 1 time a week on average. In the transition from juice to wine, the mean concentrations of TYR and HYT increased about 60 and 20 times. In wine, TYR ranged between 4.20 and 15.51 mg/L, and HYT between 0.33 and 3.45 mg/L confirming the values in the literature. Statistically significant differences have been observed between yeast strains, both for TYR and HYT, and maximum variability between strain mean concentrations was about 35%, corresponding to a range of about 2.2 mg/L TYR and 0.55 mg/L HYT. In any case, the variability linked to the origin of the juice was higher than that linked to the Saccharomyces cerevisiae strain. Pour Nikfardjam et al. 2007]. Mitteilungen Klosterneuburg 57(3), 146-152 Di Tommaso et al. (1998). J. High Res. Chromatography 21(10), 549-553 Minuti et al. (2006). J. Chromatography A, 1114, 263-268 Romboli et al. (2015). W. J. Microbiol. Biotech. 31(7), 1137-1145.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Tomàs Villegas*, Chiara Barnaba, Giorgio Nicolini, Luca Debiasi, Roberto Larcher, Tiziana Nardin

*fondazione E.Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.