Macrowine 2021
IVES 9 IVES Conference Series 9 The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Abstract

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L [Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples. Concentrations of about 2-3 mg/L have been reported by Minuti et al. [2006] for red wines while Romboli et al. [2015] observed definitely higher concentrations – up to 25 mg/L – in case of slow fermentations of Sangiovese wines processed in lab-scale. Oddly, in spite of the non-negligible concentration of these compounds in wine, few data are available regarding the concentration variability of TYR and HYT due to not genetically engineered Saccharomyces cerevisiae strains available on the market and used in winery conditions. To investigate this variability, 7 yeast strains (Zymaflore VL1; Fermol Arome Plus; AWRI 796; La Claire EM2; Anchor VIN13; Zymaflore VL3; Mycoferm CRU 31) were used (15 g/hL) to ferment – on semi-industrial scale, at 18-21°C – five Pinot gris juices achieved from different vineyards. They were adequately provided with natural assimilable nitrogen (163-214 mg/L), and had been well settled (36 h, 10°C, < 100 NTU) and supplemented with 20-30 mg/L SO2. After alcoholic fermentation, wines were sulphited (80 mg/L) and maintained sur lies under argon blanketing (4°C x 90 days), with batonnage 1 time a week on average. In the transition from juice to wine, the mean concentrations of TYR and HYT increased about 60 and 20 times. In wine, TYR ranged between 4.20 and 15.51 mg/L, and HYT between 0.33 and 3.45 mg/L confirming the values in the literature. Statistically significant differences have been observed between yeast strains, both for TYR and HYT, and maximum variability between strain mean concentrations was about 35%, corresponding to a range of about 2.2 mg/L TYR and 0.55 mg/L HYT. In any case, the variability linked to the origin of the juice was higher than that linked to the Saccharomyces cerevisiae strain. Pour Nikfardjam et al. 2007]. Mitteilungen Klosterneuburg 57(3), 146-152 Di Tommaso et al. (1998). J. High Res. Chromatography 21(10), 549-553 Minuti et al. (2006). J. Chromatography A, 1114, 263-268 Romboli et al. (2015). W. J. Microbiol. Biotech. 31(7), 1137-1145.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Tomàs Villegas*, Chiara Barnaba, Giorgio Nicolini, Luca Debiasi, Roberto Larcher, Tiziana Nardin

*fondazione E.Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.