Macrowine 2021
IVES 9 IVES Conference Series 9 The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Abstract

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L [Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples. Concentrations of about 2-3 mg/L have been reported by Minuti et al. [2006] for red wines while Romboli et al. [2015] observed definitely higher concentrations – up to 25 mg/L – in case of slow fermentations of Sangiovese wines processed in lab-scale. Oddly, in spite of the non-negligible concentration of these compounds in wine, few data are available regarding the concentration variability of TYR and HYT due to not genetically engineered Saccharomyces cerevisiae strains available on the market and used in winery conditions. To investigate this variability, 7 yeast strains (Zymaflore VL1; Fermol Arome Plus; AWRI 796; La Claire EM2; Anchor VIN13; Zymaflore VL3; Mycoferm CRU 31) were used (15 g/hL) to ferment – on semi-industrial scale, at 18-21°C – five Pinot gris juices achieved from different vineyards. They were adequately provided with natural assimilable nitrogen (163-214 mg/L), and had been well settled (36 h, 10°C, < 100 NTU) and supplemented with 20-30 mg/L SO2. After alcoholic fermentation, wines were sulphited (80 mg/L) and maintained sur lies under argon blanketing (4°C x 90 days), with batonnage 1 time a week on average. In the transition from juice to wine, the mean concentrations of TYR and HYT increased about 60 and 20 times. In wine, TYR ranged between 4.20 and 15.51 mg/L, and HYT between 0.33 and 3.45 mg/L confirming the values in the literature. Statistically significant differences have been observed between yeast strains, both for TYR and HYT, and maximum variability between strain mean concentrations was about 35%, corresponding to a range of about 2.2 mg/L TYR and 0.55 mg/L HYT. In any case, the variability linked to the origin of the juice was higher than that linked to the Saccharomyces cerevisiae strain. Pour Nikfardjam et al. 2007]. Mitteilungen Klosterneuburg 57(3), 146-152 Di Tommaso et al. (1998). J. High Res. Chromatography 21(10), 549-553 Minuti et al. (2006). J. Chromatography A, 1114, 263-268 Romboli et al. (2015). W. J. Microbiol. Biotech. 31(7), 1137-1145.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Tomàs Villegas*, Chiara Barnaba, Giorgio Nicolini, Luca Debiasi, Roberto Larcher, Tiziana Nardin

*fondazione E.Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.