Macrowine 2021
IVES 9 IVES Conference Series 9 The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Abstract

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L [Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples. Concentrations of about 2-3 mg/L have been reported by Minuti et al. [2006] for red wines while Romboli et al. [2015] observed definitely higher concentrations – up to 25 mg/L – in case of slow fermentations of Sangiovese wines processed in lab-scale. Oddly, in spite of the non-negligible concentration of these compounds in wine, few data are available regarding the concentration variability of TYR and HYT due to not genetically engineered Saccharomyces cerevisiae strains available on the market and used in winery conditions. To investigate this variability, 7 yeast strains (Zymaflore VL1; Fermol Arome Plus; AWRI 796; La Claire EM2; Anchor VIN13; Zymaflore VL3; Mycoferm CRU 31) were used (15 g/hL) to ferment – on semi-industrial scale, at 18-21°C – five Pinot gris juices achieved from different vineyards. They were adequately provided with natural assimilable nitrogen (163-214 mg/L), and had been well settled (36 h, 10°C, < 100 NTU) and supplemented with 20-30 mg/L SO2. After alcoholic fermentation, wines were sulphited (80 mg/L) and maintained sur lies under argon blanketing (4°C x 90 days), with batonnage 1 time a week on average. In the transition from juice to wine, the mean concentrations of TYR and HYT increased about 60 and 20 times. In wine, TYR ranged between 4.20 and 15.51 mg/L, and HYT between 0.33 and 3.45 mg/L confirming the values in the literature. Statistically significant differences have been observed between yeast strains, both for TYR and HYT, and maximum variability between strain mean concentrations was about 35%, corresponding to a range of about 2.2 mg/L TYR and 0.55 mg/L HYT. In any case, the variability linked to the origin of the juice was higher than that linked to the Saccharomyces cerevisiae strain. Pour Nikfardjam et al. 2007]. Mitteilungen Klosterneuburg 57(3), 146-152 Di Tommaso et al. (1998). J. High Res. Chromatography 21(10), 549-553 Minuti et al. (2006). J. Chromatography A, 1114, 263-268 Romboli et al. (2015). W. J. Microbiol. Biotech. 31(7), 1137-1145.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Tomàs Villegas*, Chiara Barnaba, Giorgio Nicolini, Luca Debiasi, Roberto Larcher, Tiziana Nardin

*fondazione E.Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.