Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Abstract

The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility. Furthermore, the dead yeast can also release other compounds which can act as flavor agents and aromatic precursors improving the complexity of the wines. For several years, the companies of enological products have supplied wineries with several preparations rich in mannoproteins and polysaccharides obtained from Saccharomyces cerevisiae cell walls, using physical and/or enzymatic treatment under different names (inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and yeast mannoproteins). These products are supplied as an alternative to wine ageing on lees in order to improve the aromatic profile of the wines. The aim of this work was to study the effect of ageing with different Specific Inactivated Dry Yeasts (SIDY) on the volatile composition of Chilean Sauvignon Blanc and Carménère white and red wines. The dose applied was 30 g/hL and the treatments lasted 2 months. The wines were analyzed by gas chromatography mass spectrometryusing the headspace stir bar sorptive extraction technique (HSSE). Stir bars coated with polydimethylsiloxane
(PDMS) were used. In the case of white wines, two different SIDY (SIDY 1 and SIDY 2) were used. The results showed that, in general, the wines treated with both SIDY had higher ester and alcohol amounts than the control wines. Respect to the red wines, three different SIDY (SIDY 1, SIDY 2 and SIDY3) were used. In this case, in general, the wines treated with SIDY 3 were wines with a higher amount of esters and lower quantities of alcohols than the other two treated (SIDY 1, SIDY 2) and the control wines. In addition, the treated red wines presented lower amounts of acetic acid and acetoin than the controls.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003, FONDECYT 11140275 andFONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Cristina Ubeda

*Lallemand Inc. Chile y Compañía Limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.