Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Abstract

The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility. Furthermore, the dead yeast can also release other compounds which can act as flavor agents and aromatic precursors improving the complexity of the wines. For several years, the companies of enological products have supplied wineries with several preparations rich in mannoproteins and polysaccharides obtained from Saccharomyces cerevisiae cell walls, using physical and/or enzymatic treatment under different names (inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and yeast mannoproteins). These products are supplied as an alternative to wine ageing on lees in order to improve the aromatic profile of the wines. The aim of this work was to study the effect of ageing with different Specific Inactivated Dry Yeasts (SIDY) on the volatile composition of Chilean Sauvignon Blanc and Carménère white and red wines. The dose applied was 30 g/hL and the treatments lasted 2 months. The wines were analyzed by gas chromatography mass spectrometryusing the headspace stir bar sorptive extraction technique (HSSE). Stir bars coated with polydimethylsiloxane
(PDMS) were used. In the case of white wines, two different SIDY (SIDY 1 and SIDY 2) were used. The results showed that, in general, the wines treated with both SIDY had higher ester and alcohol amounts than the control wines. Respect to the red wines, three different SIDY (SIDY 1, SIDY 2 and SIDY3) were used. In this case, in general, the wines treated with SIDY 3 were wines with a higher amount of esters and lower quantities of alcohols than the other two treated (SIDY 1, SIDY 2) and the control wines. In addition, the treated red wines presented lower amounts of acetic acid and acetoin than the controls.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003, FONDECYT 11140275 andFONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Cristina Ubeda

*Lallemand Inc. Chile y Compañía Limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.