Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Abstract

The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility. Furthermore, the dead yeast can also release other compounds which can act as flavor agents and aromatic precursors improving the complexity of the wines. For several years, the companies of enological products have supplied wineries with several preparations rich in mannoproteins and polysaccharides obtained from Saccharomyces cerevisiae cell walls, using physical and/or enzymatic treatment under different names (inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and yeast mannoproteins). These products are supplied as an alternative to wine ageing on lees in order to improve the aromatic profile of the wines. The aim of this work was to study the effect of ageing with different Specific Inactivated Dry Yeasts (SIDY) on the volatile composition of Chilean Sauvignon Blanc and Carménère white and red wines. The dose applied was 30 g/hL and the treatments lasted 2 months. The wines were analyzed by gas chromatography mass spectrometryusing the headspace stir bar sorptive extraction technique (HSSE). Stir bars coated with polydimethylsiloxane
(PDMS) were used. In the case of white wines, two different SIDY (SIDY 1 and SIDY 2) were used. The results showed that, in general, the wines treated with both SIDY had higher ester and alcohol amounts than the control wines. Respect to the red wines, three different SIDY (SIDY 1, SIDY 2 and SIDY3) were used. In this case, in general, the wines treated with SIDY 3 were wines with a higher amount of esters and lower quantities of alcohols than the other two treated (SIDY 1, SIDY 2) and the control wines. In addition, the treated red wines presented lower amounts of acetic acid and acetoin than the controls.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003, FONDECYT 11140275 andFONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Cristina Ubeda

*Lallemand Inc. Chile y Compañía Limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.