Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Abstract

The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility. Furthermore, the dead yeast can also release other compounds which can act as flavor agents and aromatic precursors improving the complexity of the wines. For several years, the companies of enological products have supplied wineries with several preparations rich in mannoproteins and polysaccharides obtained from Saccharomyces cerevisiae cell walls, using physical and/or enzymatic treatment under different names (inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and yeast mannoproteins). These products are supplied as an alternative to wine ageing on lees in order to improve the aromatic profile of the wines. The aim of this work was to study the effect of ageing with different Specific Inactivated Dry Yeasts (SIDY) on the volatile composition of Chilean Sauvignon Blanc and Carménère white and red wines. The dose applied was 30 g/hL and the treatments lasted 2 months. The wines were analyzed by gas chromatography mass spectrometryusing the headspace stir bar sorptive extraction technique (HSSE). Stir bars coated with polydimethylsiloxane
(PDMS) were used. In the case of white wines, two different SIDY (SIDY 1 and SIDY 2) were used. The results showed that, in general, the wines treated with both SIDY had higher ester and alcohol amounts than the control wines. Respect to the red wines, three different SIDY (SIDY 1, SIDY 2 and SIDY3) were used. In this case, in general, the wines treated with SIDY 3 were wines with a higher amount of esters and lower quantities of alcohols than the other two treated (SIDY 1, SIDY 2) and the control wines. In addition, the treated red wines presented lower amounts of acetic acid and acetoin than the controls.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003, FONDECYT 11140275 andFONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Cristina Ubeda

*Lallemand Inc. Chile y Compañía Limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.