Macrowine 2021
IVES 9 IVES Conference Series 9 Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Abstract

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP). An RO-EP technique (and apparatus) was proposed in the 2008 US Patent application by Wollan [4]. In this system, wine is fractionated by reverse osmosis (RO) to generate ‘retentate’ (i.e. concentrated wine) and ‘permeate’ streams. Retentate is circulated back to the feed tank, while permeate is degassed, moderately heated (to 45–55°C), and passed through a hydrophobic hollow fibre membrane; with water flowing across the downstream face of the membrane, as a ‘stripping’ liquid. During RO, ethanol vapour diffuses through membrane pores and is subsequently condensed in the ‘strip’ water, such that the ethanol content of the permeate decreases. Treated permeate is then returned to the feed tank, ultimately giving RAW. Depending on the processing parameters of RO-EP treatment, the alcohol level of RAW can be as much as 1 to 2% (v/v) lower than untreated wine. To date, few studies have considered the impact of RO-EP on wine composition. In this study, two red wines were partially dealcoholised by RO-EP and wine (before and after treatment), retentate, permeate (before and after EP) and strip water samples collected for compositional analysis. Wine colour was measured using spectrophotometric methods; with other compositional changes determined by WineScan, high performance liquid chromatography and gas chromatography-mass spectrometry analyses. Compositional data will be presented, to provide insight into the chemical changes that occur during dealcoholisation of red wine by RO-EP.

References: 1. Pickering, G.J. (2000) Low- and reduced-alcohol wine: A review. Journal of Wine Research, 2000. 11(2): p. 129-144. 2. Godden, P. and Muhlack, R. (2010) Trends in the composition of Australian wine, 1984–2008. Australian and New Zealand Grapegrower and Winemaker, 558, 47–61. 3. Rowley M. (2013) Market analysis for lower alcohol Australian wine. Wine and Viticulture Journal, 28, 63–64. 4. Wollan, D. Alcohol reduction in beverages. Patent Number: US 2008/0272041 A1, 2008.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Duc-Truc Pham*, David Jeffery, David Wollan, Kerry Wilkinson, Vanessa Stockdale

*School of AFW

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.