Macrowine 2021
IVES 9 IVES Conference Series 9 Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Abstract

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP). An RO-EP technique (and apparatus) was proposed in the 2008 US Patent application by Wollan [4]. In this system, wine is fractionated by reverse osmosis (RO) to generate ‘retentate’ (i.e. concentrated wine) and ‘permeate’ streams. Retentate is circulated back to the feed tank, while permeate is degassed, moderately heated (to 45–55°C), and passed through a hydrophobic hollow fibre membrane; with water flowing across the downstream face of the membrane, as a ‘stripping’ liquid. During RO, ethanol vapour diffuses through membrane pores and is subsequently condensed in the ‘strip’ water, such that the ethanol content of the permeate decreases. Treated permeate is then returned to the feed tank, ultimately giving RAW. Depending on the processing parameters of RO-EP treatment, the alcohol level of RAW can be as much as 1 to 2% (v/v) lower than untreated wine. To date, few studies have considered the impact of RO-EP on wine composition. In this study, two red wines were partially dealcoholised by RO-EP and wine (before and after treatment), retentate, permeate (before and after EP) and strip water samples collected for compositional analysis. Wine colour was measured using spectrophotometric methods; with other compositional changes determined by WineScan, high performance liquid chromatography and gas chromatography-mass spectrometry analyses. Compositional data will be presented, to provide insight into the chemical changes that occur during dealcoholisation of red wine by RO-EP.

References: 1. Pickering, G.J. (2000) Low- and reduced-alcohol wine: A review. Journal of Wine Research, 2000. 11(2): p. 129-144. 2. Godden, P. and Muhlack, R. (2010) Trends in the composition of Australian wine, 1984–2008. Australian and New Zealand Grapegrower and Winemaker, 558, 47–61. 3. Rowley M. (2013) Market analysis for lower alcohol Australian wine. Wine and Viticulture Journal, 28, 63–64. 4. Wollan, D. Alcohol reduction in beverages. Patent Number: US 2008/0272041 A1, 2008.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Duc-Truc Pham*, David Jeffery, David Wollan, Kerry Wilkinson, Vanessa Stockdale

*School of AFW

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.