Macrowine 2021
IVES 9 IVES Conference Series 9 The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Abstract

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines. The study involved a series of laboratory and commercial scale trials in which the chemical composition, tartrate and oxidative stability of the samples were investigated. In brief, the use of a 20% H2SO4 solution for the activation of the resins was equally effective in lowering the wine’s pH than a 50% H2SO4 solution. Correspondingly, 2.5 volumes of H2SO4 solution were enough to activate 10 volumes of resin. The outcomes of using cation exchange resins were wines with significantly lower pH (e.g. 33.5% reduction), higher titratable acidity (e.g. 31% rise), higher concentration of free sulfur dioxide (e.g. 56% increase), less cations such as potassium, calcium, iron, copper (e.g. 57 to 99 % drop), etc. Regarding tartrate stability, white and red wine samples were subjected to cation exchange treatments, and the resulting wines were blended back with the untreated wines in different proportions ranging from 0 to 100%. Wine tartrate stability was achieved by blending untreated wines with approximately 20% of cation exchange treated samples (by volume). Blends with higher volumes of cation exchange treated wines were significantly more stable but less appreciated from a sensory point of view. Finally, with regards to wine oxidation, the treatments caused a positive effect on the oxidative stability of the blends produced.

Acknowledgements: Fondecyt grant Nº 1150725

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

V. Felipe Laurie*, Felipe Ponce, Verónica Carrasco, Yaneris Mirabal-Gallardo

*Universidad de Talca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.