Macrowine 2021
IVES 9 IVES Conference Series 9 The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Abstract

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines. The study involved a series of laboratory and commercial scale trials in which the chemical composition, tartrate and oxidative stability of the samples were investigated. In brief, the use of a 20% H2SO4 solution for the activation of the resins was equally effective in lowering the wine’s pH than a 50% H2SO4 solution. Correspondingly, 2.5 volumes of H2SO4 solution were enough to activate 10 volumes of resin. The outcomes of using cation exchange resins were wines with significantly lower pH (e.g. 33.5% reduction), higher titratable acidity (e.g. 31% rise), higher concentration of free sulfur dioxide (e.g. 56% increase), less cations such as potassium, calcium, iron, copper (e.g. 57 to 99 % drop), etc. Regarding tartrate stability, white and red wine samples were subjected to cation exchange treatments, and the resulting wines were blended back with the untreated wines in different proportions ranging from 0 to 100%. Wine tartrate stability was achieved by blending untreated wines with approximately 20% of cation exchange treated samples (by volume). Blends with higher volumes of cation exchange treated wines were significantly more stable but less appreciated from a sensory point of view. Finally, with regards to wine oxidation, the treatments caused a positive effect on the oxidative stability of the blends produced.

Acknowledgements: Fondecyt grant Nº 1150725

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

V. Felipe Laurie*, Felipe Ponce, Verónica Carrasco, Yaneris Mirabal-Gallardo

*Universidad de Talca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.