Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Abstract

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L). These residues can be minimized with pressing and clarification of the juice prior to fermentation, but may increase during prolonged maceration. At the same time, H2S can play a role on the formation of the important varietal thiols 3-mercapto hexanol (3MH) and 4-mercapto-4-methylpentan-2-one (4MMP) as the direct sulfur donor to E-2-hexenal or mesityl oxide, respectively. Sauvignon blanc juices from three different locations was obtained at a commercial winery in Marlborough, New Zealand. One sample (A) was collected from the receival bin and pressed to obtain 25 L of juice. Two other samples (B and C) were collected from the commercial pressing operation. The samples were cold settled, racked to glass bottles (700 mL of juice), and then 0, 2, 10 or 50 mg/L of a wettable elemental sulfur compound was added. The fermentation was carried out using Saccharomyces cerevisiae (EC1118) at 15°C. The juices showed quite different potential to produce 3MH and 3MHA, and without any added sulfur, juice A produced a high amount of 3MH (6,000 ng/L), while juices B and C showed signs of oxidation and little 3MH was formed (< 600 ng/L). The addition of 50 mg/L of elemental sulfur caused a 1.7-fold increment in 3MH for juice A. For juice B detectable levels of 3MH and 3MHA were only observed for the extreme addition of 50 mg/L S0, which led to a 20-fold increase in 3MH production for juice C. Even though the results showed a clear relation between S0 in juice and varietal thiols in wine, the deliberate increase in the fungicide use close to harvest needs to be carefully managed, as levels of unwanted reductive sulfur compounds including H2S, methanethiol and carbon disulfide in the final wine were found to increase with the higher elemental sulfur additions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Leandro Dias Araujo*, Bruno Fedrizzi, Paul Kilmartin, Suzanne Callerot, Wessel du Toit

*University of Auckland

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.