Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of various groups of pyranoanthocyanins in Merlot red wine

Characterization of various groups of pyranoanthocyanins in Merlot red wine

Abstract

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations. Centrifugal partition chromatography (CPC), as the key purification technique, is commonly used in phytochemistry to separate natural substances. Based on the partition of compounds in a non-miscible liquid-liquid system, it provides many advantages. On one hand, the fractionation is applied on a significant quantity of product, in a short period of time, and thus leads to high purification yield. On the other hand, the selectivity of the solvent system provides efficiency for separating molecules from each other. The red wine used in this study was an oxidized sample from Merlot. It was also fractionated with a gradient elution solvent system. Each obtained fraction from CPC was submitted to HPLC-ESI in order to group the same UV and visible profiles. The pigments were also distributed in 8 blocks and the wash fraction, which were finally analysed with a UHPLC-ESI/Q-ToF strategy. Attention was first focused on blocks 1 and 2. The study of their anthocyanic profile by UHPLC-ESI/Q-ToF revealed the occurrence of various adducts depending on the polarity. Some pyranomalvidin-3-O-coumaroylglucoside adducts, and pyranomalvidin3-O-glucoside with a procyanidin dimer were detected in block 1, and pyranomalvidin-3-O-glucoside-4-vinyl(epi)catechin or acetylglucoside-4-vinyl(epi)catechin were found in block 2. HPLC at the preparative scale allowed separating and collecting each pigment in order to determine and validate their molecular structure by nuclear magnetic resonance (NMR). With the aim to complete this study, further investigation will determine the chemical properties of these molecules. Finally, a first evaluation of their concentrations in a few red wines from Bordeaux region
(oxidized or not) will determine a kinetic pattern of the pigments and their relative importance as markers of wine ageing. Furthermore, CPC which is used in this study is an appropriate anthocyanin fractionation and purification technique at the preparative scale towards the complexity of the red wine sample.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierre-Louis Teissedre*, Cindy Quaglieri, Michael Jourdes, Pierre Waffo-Téguo, Tristan Richard

*ISVV- Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).