Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of various groups of pyranoanthocyanins in Merlot red wine

Characterization of various groups of pyranoanthocyanins in Merlot red wine

Abstract

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations. Centrifugal partition chromatography (CPC), as the key purification technique, is commonly used in phytochemistry to separate natural substances. Based on the partition of compounds in a non-miscible liquid-liquid system, it provides many advantages. On one hand, the fractionation is applied on a significant quantity of product, in a short period of time, and thus leads to high purification yield. On the other hand, the selectivity of the solvent system provides efficiency for separating molecules from each other. The red wine used in this study was an oxidized sample from Merlot. It was also fractionated with a gradient elution solvent system. Each obtained fraction from CPC was submitted to HPLC-ESI in order to group the same UV and visible profiles. The pigments were also distributed in 8 blocks and the wash fraction, which were finally analysed with a UHPLC-ESI/Q-ToF strategy. Attention was first focused on blocks 1 and 2. The study of their anthocyanic profile by UHPLC-ESI/Q-ToF revealed the occurrence of various adducts depending on the polarity. Some pyranomalvidin-3-O-coumaroylglucoside adducts, and pyranomalvidin3-O-glucoside with a procyanidin dimer were detected in block 1, and pyranomalvidin-3-O-glucoside-4-vinyl(epi)catechin or acetylglucoside-4-vinyl(epi)catechin were found in block 2. HPLC at the preparative scale allowed separating and collecting each pigment in order to determine and validate their molecular structure by nuclear magnetic resonance (NMR). With the aim to complete this study, further investigation will determine the chemical properties of these molecules. Finally, a first evaluation of their concentrations in a few red wines from Bordeaux region
(oxidized or not) will determine a kinetic pattern of the pigments and their relative importance as markers of wine ageing. Furthermore, CPC which is used in this study is an appropriate anthocyanin fractionation and purification technique at the preparative scale towards the complexity of the red wine sample.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierre-Louis Teissedre*, Cindy Quaglieri, Michael Jourdes, Pierre Waffo-Téguo, Tristan Richard

*ISVV- Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.