Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of various groups of pyranoanthocyanins in Merlot red wine

Characterization of various groups of pyranoanthocyanins in Merlot red wine

Abstract

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations. Centrifugal partition chromatography (CPC), as the key purification technique, is commonly used in phytochemistry to separate natural substances. Based on the partition of compounds in a non-miscible liquid-liquid system, it provides many advantages. On one hand, the fractionation is applied on a significant quantity of product, in a short period of time, and thus leads to high purification yield. On the other hand, the selectivity of the solvent system provides efficiency for separating molecules from each other. The red wine used in this study was an oxidized sample from Merlot. It was also fractionated with a gradient elution solvent system. Each obtained fraction from CPC was submitted to HPLC-ESI in order to group the same UV and visible profiles. The pigments were also distributed in 8 blocks and the wash fraction, which were finally analysed with a UHPLC-ESI/Q-ToF strategy. Attention was first focused on blocks 1 and 2. The study of their anthocyanic profile by UHPLC-ESI/Q-ToF revealed the occurrence of various adducts depending on the polarity. Some pyranomalvidin-3-O-coumaroylglucoside adducts, and pyranomalvidin3-O-glucoside with a procyanidin dimer were detected in block 1, and pyranomalvidin-3-O-glucoside-4-vinyl(epi)catechin or acetylglucoside-4-vinyl(epi)catechin were found in block 2. HPLC at the preparative scale allowed separating and collecting each pigment in order to determine and validate their molecular structure by nuclear magnetic resonance (NMR). With the aim to complete this study, further investigation will determine the chemical properties of these molecules. Finally, a first evaluation of their concentrations in a few red wines from Bordeaux region
(oxidized or not) will determine a kinetic pattern of the pigments and their relative importance as markers of wine ageing. Furthermore, CPC which is used in this study is an appropriate anthocyanin fractionation and purification technique at the preparative scale towards the complexity of the red wine sample.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierre-Louis Teissedre*, Cindy Quaglieri, Michael Jourdes, Pierre Waffo-Téguo, Tristan Richard

*ISVV- Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.